BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36098531)

  • 1. A Novel Approach To Identify Inhibitors of Iron Acquisition Systems of Pseudomonas aeruginosa.
    Kannon M; Nebane NM; Ruiz P; McKellip S; Vinson PN; Mitra A
    Microbiol Spectr; 2022 Oct; 10(5):e0243722. PubMed ID: 36098531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas aeruginosa FpvB Is a High-Affinity Transporter for Xenosiderophores Ferrichrome and Ferrioxamine B.
    Chan DCK; Burrows LL
    mBio; 2023 Feb; 14(1):e0314922. PubMed ID: 36507834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation.
    Zygiel EM; Obisesan AO; Nelson CE; Oglesby AG; Nolan EM
    J Biol Chem; 2021; 296():100160. PubMed ID: 33273016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas aeruginosa and its multiple strategies to access iron.
    Schalk IJ; Perraud Q
    Environ Microbiol; 2023 Apr; 25(4):811-831. PubMed ID: 36571575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy.
    Llamas MA; Sánchez-Jiménez A
    Adv Exp Med Biol; 2022; 1386():29-68. PubMed ID: 36258068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin.
    Marvig RL; Damkiær S; Khademi SM; Markussen TM; Molin S; Jelsbak L
    mBio; 2014 May; 5(3):e00966-14. PubMed ID: 24803516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant-Derived Catechols Are Substrates of TonB-Dependent Transporters and Sensitize Pseudomonas aeruginosa to Siderophore-Drug Conjugates.
    Luscher A; Gasser V; Bumann D; Mislin GLA; Schalk IJ; Köhler T
    mBio; 2022 Aug; 13(4):e0149822. PubMed ID: 35770947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa.
    Glanville DG; Mullineaux-Sanders C; Corcoran CJ; Burger BT; Imam S; Donohue TJ; Ulijasz AT
    mSystems; 2021 Feb; 6(1):. PubMed ID: 33531406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence High-Throughput Screening for Inhibitors of TonB Action.
    Nairn BL; Eliasson OS; Hyder DR; Long NJ; Majumdar A; Chakravorty S; McDonald P; Roy A; Newton SM; Klebba PE
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28242720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heme-responsive PrrH sRNA regulates
    Hoang T-M; Huang W; Gans J; Weiner J; Nowak E; Barbier M; Wilks A; Kane MA; Oglesby AG
    mSphere; 2023 Oct; 8(5):e0039223. PubMed ID: 37800921
    [No Abstract]   [Full Text] [Related]  

  • 11. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in
    Normant V; Kuhn L; Munier M; Hammann P; Mislin GLA; Schalk IJ
    ACS Infect Dis; 2022 Jan; 8(1):183-196. PubMed ID: 34878758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic Adaption of
    Perraud Q; Cantero P; Roche B; Gasser V; Normant VP; Kuhn L; Hammann P; Mislin GLA; Ehret-Sabatier L; Schalk IJ
    Mol Cell Proteomics; 2020 Apr; 19(4):589-607. PubMed ID: 32024770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis.
    Mouriño S; Wilks A
    Adv Microb Physiol; 2021; 79():89-132. PubMed ID: 34836613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repurposing Acitretin as an Antipseudomonal Agent Targeting the
    Robinson EA; Wilks A; Xue F
    Biochemistry; 2021 Mar; 60(9):689-698. PubMed ID: 33621054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.
    Cornelis P; Dingemans J
    Front Cell Infect Microbiol; 2013; 3():75. PubMed ID: 24294593
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Shahzad S; Krug SA; Mouriño S; Huang W; Kane MA; Wilks A
    mBio; 2024 Mar; 15(3):e0276323. PubMed ID: 38319089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Mobilization of Ferrous Iron in
    Blank BR; Talukder P; Muir RK; Green ER; Skaar EP; Renslo AR
    ACS Infect Dis; 2019 Aug; 5(8):1366-1375. PubMed ID: 31140267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron/Heme Metabolism-Targeted Gallium(III) Nanoparticles Are Active against Extracellular and Intracellular
    Choi SR; Britigan BE; Narayanasamy P
    Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30782994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs.
    Konings AF; Martin LW; Sharples KJ; Roddam LF; Latham R; Reid DW; Lamont IL
    Infect Immun; 2013 Aug; 81(8):2697-704. PubMed ID: 23690396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection.
    Takase H; Nitanai H; Hoshino K; Otani T
    Infect Immun; 2000 Aug; 68(8):4498-504. PubMed ID: 10899848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.