These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36098581)

  • 21. Amplification of asymmetric induction in sequential reactions of bis-diazoacetates catalyzed by chiral dirhodium(II) carboxamidates.
    Doyle MP; Wang Y; Ghorbani P; Bappert E
    Org Lett; 2005 Oct; 7(22):5035-8. PubMed ID: 16235951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of ortho-substituents on rhodium-catalyzed asymmetric synthesis of β-lactones by intramolecular C-H insertions of aryldiazoacetates.
    Fu L; Wang H; Davies HM
    Org Lett; 2014 Jun; 16(11):3036-9. PubMed ID: 24840720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C-H Activation Reactions: An Experimental and Computational Study.
    Piou T; Romanov-Michailidis F; Romanova-Michaelides M; Jackson KE; Semakul N; Taggart TD; Newell BS; Rithner CD; Paton RS; Rovis T
    J Am Chem Soc; 2017 Jan; 139(3):1296-1310. PubMed ID: 28060499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodium-catalyzed intramolecular formation of N-sulfamoyl 2,3-aziridino-γ-lactones and their use for the enantiospecific synthesis of α,β-diamino acid derivatives.
    Valle MS; Saraiva MF; Retailleau P; de Almeida MV; Dodd RH
    J Org Chem; 2012 Jul; 77(13):5592-9. PubMed ID: 22667756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C-H insertion and aziridination reactions.
    Lebel H; Huard K; Lectard S
    J Am Chem Soc; 2005 Oct; 127(41):14198-9. PubMed ID: 16218610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addition of alkynes to aldehydes and activated ketones catalyzed by rhodium-phosphine complexes.
    Dhondi PK; Carberry P; Choi LB; Chisholm JD
    J Org Chem; 2007 Dec; 72(25):9590-6. PubMed ID: 17999525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
    Liao K; Pickel TC; Boyarskikh V; Bacsa J; Musaev DG; Davies HML
    Nature; 2017 Nov; 551(7682):609-613. PubMed ID: 29156454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rh III- and Ir III-catalyzed asymmetric transfer hydrogenation of ketones in water.
    Wu X; Li X; Zanotti-Gerosa A; Pettman A; Liu J; Mills AJ; Xiao J
    Chemistry; 2008; 14(7):2209-22. PubMed ID: 18095274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhodium-catalyzed linear codimerization and cycloaddition of ketenes with alkynes.
    Kondo T; Niimi M; Yoshida Y; Wada K; Mitsudo TA; Kimura Y; Toshimitsu A
    Molecules; 2010 Jun; 15(6):4189-200. PubMed ID: 20657433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhodium-catalyzed redox allylation reactions of ketones.
    Williams FJ; Grote RE; Jarvo ER
    Chem Commun (Camb); 2012 Feb; 48(10):1496-8. PubMed ID: 21984365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C-H Functionalization Reactions.
    Cammarota RC; Liu W; Bacsa J; Davies HML; Sigman MS
    J Am Chem Soc; 2022 Feb; 144(4):1881-1898. PubMed ID: 35073072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of C[bond]H bond activation/C[bond]C bond formation reaction between diazo compound and alkane catalyzed by dirhodium tetracarboxylate.
    Nakamura E; Yoshikai N; Yamanaka M
    J Am Chem Soc; 2002 Jun; 124(24):7181-92. PubMed ID: 12059244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent enhancement of reaction selectivity: a unique property of cationic chiral dirhodium carboxamidates.
    Wang X; Weigl C; Doyle MP
    J Am Chem Soc; 2011 Jun; 133(24):9572-9. PubMed ID: 21591747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origins of the selectivity for borylation of primary over secondary C-H bonds catalyzed by Cp*-rhodium complexes.
    Wei CS; Jiménez-Hoyos CA; Videa MF; Hartwig JF; Hall MB
    J Am Chem Soc; 2010 Mar; 132(9):3078-91. PubMed ID: 20121104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rh-catalyzed (5+2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity.
    Xu X; Liu P; Shu XZ; Tang W; Houk KN
    J Am Chem Soc; 2013 Jun; 135(25):9271-4. PubMed ID: 23725341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to alkynes.
    Li C; Grugel CP; Breit B
    Chem Commun (Camb); 2016 Apr; 52(34):5840-3. PubMed ID: 27040888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation.
    Srivastava P; Yang H; Ellis-Guardiola K; Lewis JC
    Nat Commun; 2015 Jul; 6():7789. PubMed ID: 26206238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finding Opportunities from Surprises and Failures. Development of Rhodium-Stabilized Donor/Acceptor Carbenes and Their Application to Catalyst-Controlled C-H Functionalization.
    Davies HML
    J Org Chem; 2019 Oct; 84(20):12722-12745. PubMed ID: 31525891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.