These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36098624)

  • 1. Design and experiment of a 3-DoF master device with a 2-DoF parallel mechanism for flexible ureteroscopy.
    Zhao J; Wang S; Wang J; Li J; Cui L; Li J
    Int J Med Robot; 2023 Feb; 19(1):e2459. PubMed ID: 36098624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly intuitive and ergonomic redundant joint master device for four-degrees of freedom flexible endoscopic surgery robot.
    Ahn J; Kim J; Lee H; Hwang M; Kwon DS
    Int J Med Robot; 2021 Feb; 17(1):1-14. PubMed ID: 32794625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An all-joint-control master device for single-port laparoscopic surgery robots.
    Shim S; Kang T; Ji D; Choi H; Joung S; Hong J
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1547-57. PubMed ID: 26872809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety enhanced surgical robot for flexible ureteroscopy based on force feedback.
    Shu X; Hua P; Wang S; Zhang L; Xie L
    Int J Med Robot; 2022 Oct; 18(5):e2410. PubMed ID: 35439845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Performance Investigation of a Robot-Assisted Flexible Ureteroscopy System.
    Zhao J; Li J; Cui L; Shi C; Wei G
    Appl Bionics Biomech; 2021; 2021():6911202. PubMed ID: 34840603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES).
    Phee SJ; Low SC; Huynh VA; Kencana AP; Sun ZL; Yang K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1192-5. PubMed ID: 19963992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Flexible Transoral Robot Towards COVID-19 Swab Sampling.
    Li C; Gu X; Xiao X; Lim CM; Duan X; Ren H
    Front Robot AI; 2021; 8():612167. PubMed ID: 33912594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intuitive master device for endoscopic robots with visual-motor correspondence.
    Cheon B; Baek H; Kim CK; Ahn J; Kwon DS
    Int J Med Robot; 2022 Jun; 18(3):e2397. PubMed ID: 35349215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery.
    Deshpande N; Chauhan M; Pacchierotti C; Prattichizzo D; Caldwell DG; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5156-5159. PubMed ID: 28269426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic and Workspace Analysis of the Master Robot in the Sina
    Aghanouri M; Kheradmand P; Mousavi M; Moradi H; Mirbagheri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4777-4780. PubMed ID: 34892279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic analysis of a flexible six-DOF parallel mechanism.
    Jing FS; Tan M; Hou ZG; Liang ZZ; Wang YK; Gupta MM; Nikiforuk PN
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):379-89. PubMed ID: 16602597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b).
    Saglam R; Muslumanoglu AY; Tokatlı Z; Caşkurlu T; Sarica K; Taşçi Aİ; Erkurt B; Süer E; Kabakci AS; Preminger G; Traxer O; Rassweiler JJ
    Eur Urol; 2014 Dec; 66(6):1092-100. PubMed ID: 25059998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ergonomic comfort workspace analysis of master manipulator for robotic laparoscopic surgery with motion scaled teleoperation system.
    Kang D; Kwon DS
    Int J Med Robot; 2022 Dec; 18(6):e2448. PubMed ID: 35986717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-assisted flexible ureteroscopy: an update.
    Rassweiler J; Fiedler M; Charalampogiannis N; Kabakci AS; Saglam R; Klein JT
    Urolithiasis; 2018 Feb; 46(1):69-77. PubMed ID: 29170856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel robotic system for flexible ureteroscopy.
    Shu X; Chen Q; Xie L
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 33103335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surgical bedside master console for neurosurgical robotic system.
    Arata J; Kenmotsu H; Takagi M; Hori T; Miyagi T; Fujimoto H; Kajita Y; Hayashi Y; Chinzei K; Hashizume M
    Int J Comput Assist Radiol Surg; 2013 Jan; 8(1):75-86. PubMed ID: 22585461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.