These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36098910)

  • 1. From Inert to Catalytically Active Milling Media: Galvanostatic Coating for Direct Mechanocatalysis.
    Wohlgemuth M; Mayer M; Rappen M; Schmidt F; Saure R; Grätz S; Borchardt L
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212694. PubMed ID: 36098910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Direct Mechanocatalytic Suzuki-Miyaura Reaction of Small Organic Molecules.
    Pickhardt W; Beaković C; Mayer M; Wohlgemuth M; Kraus FJL; Etter M; Grätz S; Borchardt L
    Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202205003. PubMed ID: 35638133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Milling Medium-Free Suzuki Coupling by Direct Mechanocatalysis: From Mixer Mills to Resonant Acoustic Mixers.
    Wohlgemuth M; Schmidt S; Mayer M; Pickhardt W; Grätz S; Borchardt L
    Chemistry; 2023 Nov; 29(65):e202301714. PubMed ID: 37503657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki Polymerization.
    Vogt CG; Grätz S; Lukin S; Halasz I; Etter M; Evans JD; Borchardt L
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):18942-18947. PubMed ID: 31593331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sonogashira Coupling on Palladium Milling Balls-A new Reaction Pathway in Mechanochemistry.
    Pickhardt W; Siegfried E; Fabig S; Rappen MF; Etter M; Wohlgemuth M; Grätz S; Borchardt L
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202301490. PubMed ID: 37018656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Mechanocatalysis: Using Milling Balls as Catalysts.
    Pickhardt W; Grätz S; Borchardt L
    Chemistry; 2020 Oct; 26(57):12903-12911. PubMed ID: 32314837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Direct Mechanocatalytic Suzuki-Miyaura Coupling via Twin-Screw Extrusion.
    Chantrain V; Rensch T; Pickhardt W; Grätz S; Borchardt L
    Chemistry; 2024 Mar; 30(17):e202304060. PubMed ID: 38206188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-State Oxidation of Alcohols in Gold-Coated Milling Vessels via Direct Mechanocatalysis.
    Wohlgemuth M; Schmidt S; Mayer M; Pickhardt W; Graetz S; Borchardt L
    Angew Chem Int Ed Engl; 2024 May; ():e202405342. PubMed ID: 38801736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of the physical state and the reaction phase in the direct mechanocatalytic Suzuki-Miyaura coupling reaction.
    Yoo K; Fabig S; Grätz S; Borchardt L
    Faraday Discuss; 2023 Jan; 241(0):206-216. PubMed ID: 36200472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A guide to direct mechanocatalysis.
    Hwang S; Grätz S; Borchardt L
    Chem Commun (Camb); 2022 Feb; 58(11):1661-1671. PubMed ID: 35023515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic Energy Dose as a Unified Metric for Comparing Ball Mills in the Mechanocatalytic Depolymerization of Lignocellulose.
    Kessler M; Rinaldi R
    Front Chem; 2021; 9():816553. PubMed ID: 35047484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanochemical Preparation of Pd(II) and Pt(II) Composites with Carbonaceous Materials and Their Application in the Suzuki-Miyaura Reaction at Several Energy Inputs.
    M A Soliman M; F Peixoto A; P C Ribeiro A; Kopylovich MN; C B A Alegria E; Pombeiro AJL
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32604905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic Modeling of Mechanocatalytic Depolymerization of α-Cellulose and Beechwood.
    Kessler M; Woodward RT; Wong N; Rinaldi R
    ChemSusChem; 2018 Feb; 11(3):552-561. PubMed ID: 29205915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct mechanocatalysis by resonant acoustic mixing (RAM).
    Lennox CB; Borchers TH; Gonnet L; Barrett CJ; Koenig SG; Nagapudi K; Friščić T
    Chem Sci; 2023 Jul; 14(27):7475-7481. PubMed ID: 37449073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encaging palladium(0) in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill.
    Shi W; Yu J; Jiang Z; Shao Q; Su W
    Beilstein J Org Chem; 2017; 13():1661-1668. PubMed ID: 28904609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "
    Gonnet L; Borchers TH; Lennox CB; Vainauskas J; Teoh Y; Titi HM; Barrett CJ; Koenig SG; Nagapudi K; Friščić T
    Faraday Discuss; 2023 Jan; 241(0):128-149. PubMed ID: 36239309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time
    Lukin S; Germann LS; Friščić T; Halasz I
    Acc Chem Res; 2022 May; 55(9):1262-1277. PubMed ID: 35446551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Quinazolinones and Benzothiazoles Using α-Keto Acids under Ball Milling.
    Sharma A; Singh J; Sharma A
    J Org Chem; 2024 Apr; 89(8):5229-5238. PubMed ID: 38551089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Controlling the Reactivity of Enzymes in Mechanochemistry: Inert Surfaces Protect β-Glucosidase Activity During Ball Milling.
    Hammerer F; Ostadjoo S; Friščić T; Auclair K
    ChemSusChem; 2020 Jan; 13(1):106-110. PubMed ID: 31593363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines.
    Su W; Yu J; Li Z; Jiang Z
    J Org Chem; 2011 Nov; 76(21):9144-50. PubMed ID: 21961457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.