These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36099319)

  • 1. Wild grapevines as rootstock regulate the oxidative defense system of in vitro grafted scion varieties under drought stress.
    Nazir F; Ahmad T; Malik SI; Ahmed M; Bashir MA
    PLoS One; 2022; 17(9):e0274387. PubMed ID: 36099319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.
    Daldoul S; Boubakri H; Gargouri M; Mliki A
    Mol Biol Rep; 2020 Apr; 47(4):3141-3153. PubMed ID: 32130616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The root transcriptome dynamics reveals new valuable insights in the salt-resilience mechanism of wild grapevine (
    Daldoul S; Hanzouli F; Hamdi Z; Chenenaoui S; Wetzel T; Nick P; Mliki A; Gargouri M
    Front Plant Sci; 2022; 13():1077710. PubMed ID: 36570937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introgression Among Cultivated and Wild Grapevine in Tuscany.
    D'Onofrio C
    Front Plant Sci; 2020; 11():202. PubMed ID: 32184799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination.
    Balfagón D; Terán F; de Oliveira TDR; Santa-Catarina C; Gómez-Cadenas A
    Plant Cell Rep; 2022 Mar; 41(3):593-602. PubMed ID: 34232376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in hydraulic traits of grapevine rootstocks are not conferred to a common Vitis vinifera scion.
    Barrios-Masias FH; Knipfer T; Walker MA; McElrone AJ
    Funct Plant Biol; 2019 Feb; 46(3):228-235. PubMed ID: 32172766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera.
    Cui X; Zhang P; Chen C; Zhang J
    Plant Cell Rep; 2023 Jan; 42(1):181-196. PubMed ID: 36318328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root pressure-volume curve traits capture rootstock drought tolerance.
    Bartlett MK; Sinclair G; Fontanesi G; Knipfer T; Walker MA; McElrone AJ
    Ann Bot; 2022 Mar; 129(4):389-402. PubMed ID: 34668965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and Characterization of the Vitis vinifera L. subsp sylvestris in Southern Tuscany.
    Scali M; Zifferero A; Vignani R
    Recent Pat Biotechnol; 2018; 12(3):208-220. PubMed ID: 29366430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pepper Rootstock and Scion Physiological Responses Under Drought Stress.
    López-Serrano L; Canet-Sanchis G; Vuletin Selak G; Penella C; San Bautista A; López-Galarza S; Calatayud Á
    Front Plant Sci; 2019; 10():38. PubMed ID: 30745905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous alpha-lipoic acid treatments reduce the oxidative damage caused by drought stress in two grapevine rootstocks.
    Daler S; Kaya O
    Physiol Plant; 2024; 176(4):e14437. PubMed ID: 39004804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Physiological and biochemical responses of different scion/rootstock combinations grapevine to partial rootzone drought].
    Qi W; Li EM; Zhai H; Wang XF; Du YP
    Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):306-10. PubMed ID: 18464635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm.
    Riaz S; Boursiquot JM; Dangl GS; Lacombe T; Laucou V; Tenscher AC; Walker MA
    BMC Plant Biol; 2013 Oct; 13():149. PubMed ID: 24093598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia.
    Riaz S; De Lorenzis G; Velasco D; Koehmstedt A; Maghradze D; Bobokashvili Z; Musayev M; Zdunic G; Laucou V; Andrew Walker M; Failla O; Preece JE; Aradhya M; Arroyo-Garcia R
    BMC Plant Biol; 2018 Jun; 18(1):137. PubMed ID: 29945553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress.
    Ju YL; Yue XF; Zhao XF; Zhao H; Fang YL
    Plant Physiol Biochem; 2018 Sep; 130():501-510. PubMed ID: 30096685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters.
    Nilsen ET; Freeman J; Grene R; Tokuhisa J
    PLoS One; 2014; 9(12):e115380. PubMed ID: 25531435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative regulation by transcription factor VvWRKY13 in drought stress of Vitis vinifera L.
    Hou L; Fan X; Hao J; Liu G; Zhang Z; Liu X
    Plant Physiol Biochem; 2020 Mar; 148():114-121. PubMed ID: 31954281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis.
    Ju YL; Yue XF; Min Z; Wang XH; Fang YL; Zhang JX
    Plant Physiol Biochem; 2020 Jan; 146():98-111. PubMed ID: 31734522
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Coito JL; Silva HG; Ramos MJN; Cunha J; Eiras-Dias J; Amâncio S; Costa MMR; Rocheta M
    PeerJ; 2019; 7():e7879. PubMed ID: 31737441
    [No Abstract]   [Full Text] [Related]  

  • 20. Evaluating wild grapevine tolerance to copper toxicity.
    Cambrollé J; García JL; Figueroa ME; Cantos M
    Chemosphere; 2015 Feb; 120():171-8. PubMed ID: 25025740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.