BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36099477)

  • 1. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures.
    Beuming T; Martín H; Díaz-Rovira AM; Díaz L; Guallar V; Ray SS
    J Chem Inf Model; 2022 Sep; 62(18):4351-4360. PubMed ID: 36099477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are Deep Learning Structural Models Sufficiently Accurate for Virtual Screening? Application of Docking Algorithms to AlphaFold2 Predicted Structures.
    Díaz-Rovira AM; Martín H; Beuming T; Díaz L; Guallar V; Ray SS
    J Chem Inf Model; 2023 Mar; 63(6):1668-1674. PubMed ID: 36892986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
    Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R
    J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Free Energy Perturbation Simulations Coupled with Replica-Exchange Molecular Dynamics Study Ligands with Distributed Binding Sites?
    Lockhart C; Luo X; Olson A; Delfing BM; Laracuente XE; Foreman KW; Paige M; Kehn-Hall K; Klimov DK
    J Chem Inf Model; 2023 Aug; 63(15):4791-4802. PubMed ID: 37531558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10.
    Li Z; Huang Y; Wu Y; Chen J; Wu D; Zhan CG; Luo HB
    J Med Chem; 2019 Feb; 62(4):2099-2111. PubMed ID: 30689375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Protein-Ligand Binding Pose and Affinity Using the gREST+FEP Method.
    Oshima H; Re S; Sugita Y
    J Chem Inf Model; 2020 Nov; 60(11):5382-5394. PubMed ID: 32786707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using AlphaFold and Experimental Structures for the Prediction of the Structure and Binding Affinities of GPCR Complexes via Induced Fit Docking and Free Energy Perturbation.
    Coskun D; Lihan M; Rodrigues JPGLM; Vass M; Robinson D; Friesner RA; Miller EB
    J Chem Theory Comput; 2024 Jan; 20(1):477-489. PubMed ID: 38100422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive, Open-Source, and Automated Workflow for Multisite λ-Dynamics in Lead Optimization.
    Hu R; Zhang J; Kang Y; Wang Z; Pan P; Deng Y; Hsieh CY; Hou T
    J Chem Theory Comput; 2024 Feb; 20(3):1465-1478. PubMed ID: 38300792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced-Fit Docking Enables Accurate Free Energy Perturbation Calculations in Homology Models.
    Xu T; Zhu K; Beautrait A; Vendome J; Borrelli KW; Abel R; Friesner RA; Miller EB
    J Chem Theory Comput; 2022 Sep; 18(9):5710-5724. PubMed ID: 35972903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics.
    Raman EP; Paul TJ; Hayes RL; Brooks CL
    J Chem Theory Comput; 2020 Dec; 16(12):7895-7914. PubMed ID: 33201701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards predictive ligand design with free-energy based computational methods?
    Foloppe N; Hubbard R
    Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-template relationships in protein structure prediction and their effect on the accuracy of thermostability calculations.
    Lihan M; Lupyan D; Oehme D
    Protein Sci; 2023 Feb; 32(2):e4557. PubMed ID: 36573828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors.
    Lima Silva WJ; Ferreira de Freitas R
    J Comput Aided Mol Des; 2023 Sep; 37(9):407-418. PubMed ID: 37378817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.