These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 360995)

  • 21. Active transport of peptides in bacteria.
    Payne JW; Nisbet TM
    Biochem Soc Trans; 1980 Dec; 8(6):683-5. PubMed ID: 6780385
    [No Abstract]   [Full Text] [Related]  

  • 22. Evolution of enzymatic activities in the enolase superfamily: L-talarate/galactarate dehydratase from Salmonella typhimurium LT2.
    Yew WS; Fedorov AA; Fedorov EV; Almo SC; Gerlt JA
    Biochemistry; 2007 Aug; 46(33):9564-77. PubMed ID: 17649980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proton movements coupled to sugar transport via the galactose transport system in Salmonella typhimurium.
    Thienen GM; Postma PW; Dam KV
    Eur J Biochem; 1977 Mar; 73(2):521-7. PubMed ID: 14832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutant methodology in the study of carbohydrate transport.
    Kornberg HL; Henderson PJ
    Horiz Biochem Biophys; 1976; 2():1-31. PubMed ID: 776766
    [No Abstract]   [Full Text] [Related]  

  • 25. Regulation of sulfate transport in Salmonella typhimurium.
    Dreyfuss J; Pardee AB
    J Bacteriol; 1966 Jun; 91(6):2275-80. PubMed ID: 5329286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconstitution of binding protein dependent ribose transport in spheroplasts derived from a binding protein negative Escherichia coli K12 mutant and from Salmonella typhimurium.
    Robb FT; Furlong CE
    J Supramol Struct; 1980; 13(2):183-90. PubMed ID: 6787346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium.
    Pardee AB
    Science; 1967 Jun; 156(3782):1627-8. PubMed ID: 5337735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective utilization of exogenous deoxythymidine-5'-monophosphate for DNA synthesis in enterobacteria.
    Schwan H; Holldorf AW
    FEBS Lett; 1975 Sep; 57(2):179-82. PubMed ID: 1100434
    [No Abstract]   [Full Text] [Related]  

  • 29. Transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine by Salmonella typhimurium.
    Bellion E; Lash TD
    Biochim Biophys Acta; 1983 Nov; 735(3):337-40. PubMed ID: 6357279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-free activity of a sulfate binding site involved in active transport.
    Pardee AB; Prestidge LS
    Proc Natl Acad Sci U S A; 1966 Jan; 55(1):189-91. PubMed ID: 5328640
    [No Abstract]   [Full Text] [Related]  

  • 31. The molecular mechanism of dicarboxylic acid transport in Escherichia coli K 12.
    Lo TC
    J Supramol Struct; 1977; 7(3-4):463-80. PubMed ID: 357845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstitution of the binding protein-dependent galactose transport of Salmonella typhimurium in proteoliposomes.
    Richarme G; el Yaagoubi A; Kohiyama M
    Biochim Biophys Acta; 1992 Feb; 1104(1):201-6. PubMed ID: 1550848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proline transport in Salmonella typhimurium: putP permease mutants with altered substrate specificity.
    Dila DK; Maloy SR
    J Bacteriol; 1986 Nov; 168(2):590-4. PubMed ID: 3536852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene.
    Hmiel SP; Snavely MD; Miller CG; Maguire ME
    J Bacteriol; 1986 Dec; 168(3):1444-50. PubMed ID: 3536881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium.
    Betteridge PR; Ayling PD
    J Gen Microbiol; 1976 Aug; 96(2):324-34. PubMed ID: 8587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium-dependent binding of p-nitrophenyl alpha-D-galactopyranoside to membrane vesicles isolated from Salmonella typhimurium.
    Tokuda H; Kaback HR
    Biochemistry; 1978 Feb; 17(4):698-705. PubMed ID: 341975
    [No Abstract]   [Full Text] [Related]  

  • 37. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti.
    Robinson JB; Bauer WD
    J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system.
    Ayling PD; Mojica-a T; Klopotowski T
    J Gen Microbiol; 1979 Oct; 114(2):227-46. PubMed ID: 396352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformative response of the mitochondrial Pi-dicarboxylate transport system to inhibitors and substrates.
    Lofrumento NE; Zanotti F
    FEBS Lett; 1976 Mar; 63(1):129-33. PubMed ID: 1261674
    [No Abstract]   [Full Text] [Related]  

  • 40. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P; Krämer R; Unden G
    Eur J Biochem; 1994 Jun; 222(2):605-14. PubMed ID: 8020497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.