BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36099584)

  • 41. Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking Aptamers for Enhanced Adoptive Immunotherapy in Solid Tumors.
    Zhang D; Zheng Y; Lin Z; Liu X; Li J; Yang H; Tan W
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):12022-12028. PubMed ID: 32246555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy.
    McAuliffe J; Chan HF; Noblecourt L; Ramirez-Valdez RA; Pereira-Almeida V; Zhou Y; Pollock E; Cappuccini F; Redchenko I; Hill AV; Leung CSK; Van den Eynde BJ
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34479921
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review of immune checkpoint blockade in breast cancer.
    Pellegrino B; Tommasi C; Cursio OE; Musolino A; Migliori E; De Silva P; Senevirathne TH; Schena M; Scartozzi M; Farci D; Willard-Gallo K; Solinas C
    Semin Oncol; 2021 Jun; 48(3):208-225. PubMed ID: 34620502
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.
    Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR
    J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The application of nanotechnology in immune checkpoint blockade for cancer treatment.
    Deng H; Zhang Z
    J Control Release; 2018 Nov; 290():28-45. PubMed ID: 30287266
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CU06-1004-Induced Vascular Normalization Improves Immunotherapy by Modulating Tumor Microenvironment
    Park S; Oh JH; Park DJ; Zhang H; Noh M; Kim Y; Kim YS; Kim H; Kim YM; Ha SJ; Kwon YG
    Front Immunol; 2020; 11():620166. PubMed ID: 33584714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma using an intelligent autophagy-controlling metal organic framework.
    Ge YX; Zhang TW; Zhou L; Ding W; Liang HF; Hu ZC; Chen Q; Dong J; Xue FF; Yin XF; Jiang LB
    Biomaterials; 2022 Mar; 282():121407. PubMed ID: 35217343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal.
    Isoyama S; Mori S; Sugiyama D; Kojima Y; Tada Y; Shitara K; Hinohara K; Dan S; Nishikawa H
    J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34446575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Complex of PD-L1 Aptamer and Albumin Enhances Antitumor Efficacy In Vivo.
    An Y; Li X; Yao F; Duan J; Yang XD
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance.
    Zhou X; Ni Y; Liang X; Lin Y; An B; He X; Zhao X
    Front Immunol; 2022; 13():915094. PubMed ID: 36189283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade.
    House IG; Savas P; Lai J; Chen AXY; Oliver AJ; Teo ZL; Todd KL; Henderson MA; Giuffrida L; Petley EV; Sek K; Mardiana S; Gide TN; Quek C; Scolyer RA; Long GV; Wilmott JS; Loi S; Darcy PK; Beavis PA
    Clin Cancer Res; 2020 Jan; 26(2):487-504. PubMed ID: 31636098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combinational Immunotherapy for Hepatocellular Carcinoma: Radiotherapy, Immune Checkpoint Blockade and Beyond.
    Lee YH; Tai D; Yip C; Choo SP; Chew V
    Front Immunol; 2020; 11():568759. PubMed ID: 33117354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. M2-Like TAMs Function Reversal Contributes to Breast Cancer Eradication by Combination Dual Immune Checkpoint Blockade and Photothermal Therapy.
    Zhao W; Hu X; Li W; Li R; Chen J; Zhou L; Qiang S; Wu W; Shi S; Dong C
    Small; 2021 Apr; 17(13):e2007051. PubMed ID: 33599061
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering a Facile Aptamer "Molecule-Doctor" with Hairpin-Contained I-Motif Enables Accurate Imaging and Killing of Cancer Cells.
    Ma W; Sun H; Chen B; Jia R; Huang J; Cheng H; He X; Huang M; Wang K
    Anal Chem; 2021 Nov; 93(43):14552-14559. PubMed ID: 34677940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancement of antitumor immunotherapy using mitochondria-targeted cancer cell membrane-biomimetic MOF-mediated sonodynamic therapy and checkpoint blockade immunotherapy.
    Luo J; Wang X; Shi Z; Zeng Y; He L; Cao J; Sun Y; Zhang T; Huang P
    J Nanobiotechnology; 2022 May; 20(1):228. PubMed ID: 35568916
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combining PD-L1 inhibitors with immunogenic cell death triggered by chemo-photothermal therapy via a thermosensitive liposome system to stimulate tumor-specific immunological response.
    Yu J; He X; Wang Z; Wang Y; Liu S; Li X; Huang Y
    Nanoscale; 2021 Aug; 13(30):12966-12978. PubMed ID: 34477780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation.
    Wu M; Huang Q; Xie Y; Wu X; Ma H; Zhang Y; Xia Y
    J Hematol Oncol; 2022 Mar; 15(1):24. PubMed ID: 35279217
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergistic Local Combination of Radiation and Anti-Programmed Death Ligand 1 Immunotherapy Using Radiation-Responsive Splintery Metallic Nanocarriers.
    Choi B; Choi H; Yu B; Kim DH
    ACS Nano; 2020 Oct; 14(10):13115-13126. PubMed ID: 32885958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PrP
    Go G; Lee CS; Yoon YM; Lim JH; Kim TH; Lee SH
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods.
    Chandrasekaran R; Lee AS; Yap LW; Jans DA; Wagstaff KM; Cheng W
    Nanoscale; 2016 Jan; 8(1):187-96. PubMed ID: 26646051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.