These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36099637)
1. Perfluoroalkyl-Functionalized Graphene Oxide as a Multifunctional Additive for Promoting the Energetic Performance of Aluminum. Jiang Y; Wang H; Baek J; Ka D; Huynh AH; Wang Y; Zachariah MR; Zheng X ACS Nano; 2022 Sep; 16(9):14658-14665. PubMed ID: 36099637 [TBL] [Abstract][Full Text] [Related]
2. Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion. Jiang Y; Deng S; Hong S; Tiwari S; Chen H; Nomura KI; Kalia RK; Nakano A; Vashishta P; Zachariah MR; Zheng X ACS Appl Mater Interfaces; 2020 Feb; 12(6):7451-7458. PubMed ID: 31950820 [TBL] [Abstract][Full Text] [Related]
3. Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites. Jiang Y; Deng S; Hong S; Zhao J; Huang S; Wu CC; Gottfried JL; Nomura KI; Li Y; Tiwari S; Kalia RK; Vashishta P; Nakano A; Zheng X ACS Nano; 2018 Nov; 12(11):11366-11375. PubMed ID: 30335365 [TBL] [Abstract][Full Text] [Related]
4. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion. McCollum J; Pantoya ML; Iacono ST ACS Appl Mater Interfaces; 2015 Aug; 7(33):18742-9. PubMed ID: 26263844 [TBL] [Abstract][Full Text] [Related]
5. Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites. DeLisio JB; Hu X; Wu T; Egan GC; Young G; Zachariah MR J Phys Chem B; 2016 Jun; 120(24):5534-42. PubMed ID: 27228361 [TBL] [Abstract][Full Text] [Related]
6. Tuning the Reactivity of Perfluoropolyether-Functionalized Aluminum Nanoparticles by the Reaction Interface Fuel-Oxidizer Ratio. Wu C; Nie J; Li S; Wang W; Pan Q; Guo X Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159875 [TBL] [Abstract][Full Text] [Related]
7. Effect of Fluoroalkylsilane Surface Functionalization on Boron Combustion. Baek J; Jiang Y; Demko AR; Jimenez-Thomas AR; Vallez L; Ka D; Xia Y; Zheng X ACS Appl Mater Interfaces; 2022 May; 14(17):20190-20196. PubMed ID: 35467848 [TBL] [Abstract][Full Text] [Related]
8. Influence of the Hierarchy Structure of Aluminum Particles on Density, Combustion Efficiency, and Ignition Delay. Li Y; Yin L; Ren H; Wu X; Sun J; Liu X Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274744 [TBL] [Abstract][Full Text] [Related]
9. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles. Wang H; Ren H; Yan T; Li Y; Zhao W Sci Rep; 2021 Jan; 11(1):738. PubMed ID: 33436998 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Energetic Performance of Aluminum Nanoparticles by Plasma Deposition of Perfluorinated Nanofilms. Agarwal PPK; Matsoukas T ACS Appl Mater Interfaces; 2022 Aug; 14(30):35255-35264. PubMed ID: 35862005 [TBL] [Abstract][Full Text] [Related]
11. Enhancing the combustion of nAl with AlF Shen C; Yan S; Yao J; Ren H; Guo X; Nie J; Ou Y; Jiao Q; Luo Y Phys Chem Chem Phys; 2024 May; 26(21):15393-15404. PubMed ID: 38747115 [TBL] [Abstract][Full Text] [Related]
12. Highly reactive energetic films by pre-stressing nano-aluminum particles. Bello MN; Williams AM; Levitas VI; Tamura N; Unruh DK; Warzywoda J; Pantoya ML RSC Adv; 2019 Dec; 9(69):40607-40617. PubMed ID: 35542678 [TBL] [Abstract][Full Text] [Related]
13. Insights into the Fragmentation of Aluminum Hydride and Its Effect on Combustion and Agglomeration of HTPB Propellant. Jiang Z; Zhao F; Qin Z; Xu Y; Wang Y; Jiang YF; An T; Qu W; Zhang M; Liu H; Zhang B; Xiong L ACS Appl Mater Interfaces; 2024 Aug; 16(34):45640-45659. PubMed ID: 39149773 [TBL] [Abstract][Full Text] [Related]
14. Effects of Size and Prestressing of Aluminum Particles on the Oxidation of Levitated Lucas M; Brotton SJ; Min A; Woodruff C; Pantoya ML; Kaiser RI J Phys Chem A; 2020 Feb; 124(8):1489-1507. PubMed ID: 32065522 [TBL] [Abstract][Full Text] [Related]
15. Facile Thermal and Optical Ignition of Silicon Nanoparticles and Micron Particles. Huang S; Parimi VS; Deng S; Lingamneni S; Zheng X Nano Lett; 2017 Oct; 17(10):5925-5930. PubMed ID: 28873319 [TBL] [Abstract][Full Text] [Related]
16. Simultaneously Altering the Energy Release and Promoting the Adhesive Force of an Electrophoretic Energetic Film with a Fluoropolymer. Yin Y; Dong Y; Li M; Ma Z Langmuir; 2022 Mar; 38(8):2569-2575. PubMed ID: 35175063 [TBL] [Abstract][Full Text] [Related]
17. High-Performance Aluminum Fuels Induced by Monolayer Self-Assembly of Nano-Sized Energetic Fluoride Vesicles on the Surface. Wang R; Zhang L; Li X; Zhu L; Xiang Z; Xu J; Xue D; Deng Z; Su X; Zou M Adv Sci (Weinh); 2024 Jul; 11(26):e2401564. PubMed ID: 38704734 [TBL] [Abstract][Full Text] [Related]
18. Highly energetic compositions based on functionalized carbon nanomaterials. Yan QL; Gozin M; Zhao FQ; Cohen A; Pang SP Nanoscale; 2016 Mar; 8(9):4799-851. PubMed ID: 26880518 [TBL] [Abstract][Full Text] [Related]
19. Laser-Ignited Relay-Domino-Like Reactions in Graphene Oxide/CL-20 Films for High-Temperature Pulse Preparation of Bi-Layered Photothermal Membranes. Li X; Huang B; Li R; Zhang HP; Qin W; Qiao Z; Liu Y; Yang G Small; 2019 May; 15(20):e1900338. PubMed ID: 30942953 [TBL] [Abstract][Full Text] [Related]
20. Synergetic Effect of Potassium Oxysalts on Combustion and Ignition of Al/CuO Composites. Ma X; Zhao W; Le W; Li J; Chen P; Jiao Q Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]