These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 36099641)
1. Explicitly Correlated Double-Hybrid DFT: A Comprehensive Analysis of the Basis Set Convergence on the GMTKN55 Database. Mehta N; Martin JML J Chem Theory Comput; 2022 Oct; 18(10):5978-5991. PubMed ID: 36099641 [TBL] [Abstract][Full Text] [Related]
2. Basis set convergence of explicitly correlated double-hybrid density functional theory calculations. Karton A; Martin JM J Chem Phys; 2011 Oct; 135(14):144119. PubMed ID: 22010710 [TBL] [Abstract][Full Text] [Related]
3. Basis set convergence of CCSD(T) equilibrium geometries using a large and diverse set of molecular structures. Spackman PR; Jayatilaka D; Karton A J Chem Phys; 2016 Sep; 145(10):104101. PubMed ID: 27634245 [TBL] [Abstract][Full Text] [Related]
4. Reduced-Scaling Double Hybrid Density Functional Theory with Rapid Basis Set Convergence through Localized Pair Natural Orbital F12. Mehta N; Martin JML J Phys Chem Lett; 2022 Oct; 13(40):9332-9338. PubMed ID: 36178852 [TBL] [Abstract][Full Text] [Related]
5. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled? Sylvetsky N; Peterson KA; Karton A; Martin JM J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939 [TBL] [Abstract][Full Text] [Related]
6. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. Hill JG; Peterson KA; Knizia G; Werner HJ J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044 [TBL] [Abstract][Full Text] [Related]
7. The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations. Gasevic T; Bursch M; Ma Q; Grimme S; Werner HJ; Hansen A Phys Chem Chem Phys; 2024 May; 26(18):13884-13908. PubMed ID: 38661329 [TBL] [Abstract][Full Text] [Related]
8. Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory. Kodrycka M; Holzer C; Klopper W; Patkowski K J Chem Theory Comput; 2019 Nov; 15(11):5965-5986. PubMed ID: 31503481 [TBL] [Abstract][Full Text] [Related]
9. Canonical and DLPNO-Based G4(MP2)XK-Inspired Composite Wave Function Methods Parametrized against Large and Chemically Diverse Training Sets: Are They More Accurate and/or Robust than Double-Hybrid DFT? Semidalas E; Martin JML J Chem Theory Comput; 2020 Jul; 16(7):4238-4255. PubMed ID: 32456427 [TBL] [Abstract][Full Text] [Related]
10. Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets. Manna D; Kesharwani MK; Sylvetsky N; Martin JML J Chem Theory Comput; 2017 Jul; 13(7):3136-3152. PubMed ID: 28530805 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the DLPNO Binding Energies of Strongly Noncovalent Bonded Atmospheric Molecular Clusters. Schmitz G; Elm J ACS Omega; 2020 Apr; 5(13):7601-7612. PubMed ID: 32280904 [TBL] [Abstract][Full Text] [Related]
12. S66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods. Santra G; Semidalas E; Mehta N; Karton A; Martin JML Phys Chem Chem Phys; 2022 Oct; 24(41):25555-25570. PubMed ID: 36254677 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Recent BLYP- and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. Najibi A; Casanova-Páez M; Goerigk L J Phys Chem A; 2021 May; 125(18):4026-4035. PubMed ID: 33938224 [TBL] [Abstract][Full Text] [Related]
14. Semi-empirical or non-empirical double-hybrid density functionals: which are more robust? Mehta N; Casanova-Páez M; Goerigk L Phys Chem Chem Phys; 2018 Sep; 20(36):23175-23194. PubMed ID: 30062343 [TBL] [Abstract][Full Text] [Related]
15. Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. Peterson KA; Adler TB; Werner HJ J Chem Phys; 2008 Feb; 128(8):084102. PubMed ID: 18315028 [TBL] [Abstract][Full Text] [Related]
16. Some Observations on Counterpoise Corrections for Explicitly Correlated Calculations on Noncovalent Interactions. Brauer B; Kesharwani MK; Martin JM J Chem Theory Comput; 2014 Sep; 10(9):3791-9. PubMed ID: 26588524 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment. Zhang J; Valeev EF J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of density functional theory for a large and diverse set of organic and inorganic equilibrium structures. Karton A; Spackman PR J Comput Chem; 2021 Aug; 42(22):1590-1601. PubMed ID: 34121198 [TBL] [Abstract][Full Text] [Related]
19. Correlation Consistent Basis Sets for Explicitly Correlated Theory: The Transition Metals. Semidalas E; Martin JML J Chem Theory Comput; 2023 Sep; 19(17):5806-5820. PubMed ID: 37540641 [TBL] [Abstract][Full Text] [Related]
20. Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory. Warden CE; Smith DGA; Burns LA; Bozkaya U; Sherrill CD J Chem Phys; 2020 Mar; 152(12):124109. PubMed ID: 32241148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]