These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 3609976)
1. Differential induction of mixed-function oxidase (MFO) activity in rat liver and intestine by diets containing processed cabbage: correlation with cabbage levels of glucosinolates and glucosinolate hydrolysis products. McDanell R; McLean AE; Hanley AB; Heaney RK; Fenwick GR Food Chem Toxicol; 1987 May; 25(5):363-8. PubMed ID: 3609976 [TBL] [Abstract][Full Text] [Related]
2. The effect of feeding brassica vegetables and intact glucosinolates on mixed-function-oxidase activity in the livers and intestines of rats. McDanell R; McLean AE; Hanley AB; Heaney RK; Fenwick GR Food Chem Toxicol; 1989 May; 27(5):289-93. PubMed ID: 2473016 [TBL] [Abstract][Full Text] [Related]
3. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage. Ciska E; Drabińska N; Narwojsz A; Honke J Food Chem; 2016 Jul; 203():340-347. PubMed ID: 26948623 [TBL] [Abstract][Full Text] [Related]
4. Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Ciska E; Verkerk R; Honke J J Agric Food Chem; 2009 Mar; 57(6):2334-8. PubMed ID: 19292468 [TBL] [Abstract][Full Text] [Related]
6. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Palani K; Harbaum-Piayda B; Meske D; Keppler JK; Bockelmann W; Heller KJ; Schwarz K Food Chem; 2016 Jan; 190():755-762. PubMed ID: 26213035 [TBL] [Abstract][Full Text] [Related]
7. Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Ciska E; Honke J J Agric Food Chem; 2012 Apr; 60(14):3645-9. PubMed ID: 22428912 [TBL] [Abstract][Full Text] [Related]
8. Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. Martinez-Villaluenga C; Peñas E; Frias J; Ciska E; Honke J; Piskula MK; Kozlowska H; Vidal-Valverde C J Food Sci; 2009; 74(1):C62-7. PubMed ID: 19200088 [TBL] [Abstract][Full Text] [Related]
9. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations. Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432 [TBL] [Abstract][Full Text] [Related]
10. Changes in liver glutathione S-transferase activities in Coturnix quail fed municipal sludge-grown cabbage with reduced levels of glucosinolates. Stoewsand GS; Anderson JL; Lisk DJ Proc Soc Exp Biol Med; 1986 May; 182(1):95-9. PubMed ID: 3960861 [TBL] [Abstract][Full Text] [Related]
11. Ascorbic Acid and Glucosinolate Levels in New Czech Cabbage Cultivars: Effect of Production System and Fungal Infection. Novotny C; Schulzova V; Krmela A; Hajslova J; Svobodova K; Koudela M Molecules; 2018 Jul; 23(8):. PubMed ID: 30046026 [TBL] [Abstract][Full Text] [Related]
12. Plant-derived biomolecules in fermented cabbage. Tolonen M; Taipale M; Viander B; Pihlava JM; Korhonen H; Ryhänen EL J Agric Food Chem; 2002 Nov; 50(23):6798-803. PubMed ID: 12405778 [TBL] [Abstract][Full Text] [Related]
13. The effect of processing conditions on glucosinolates in cruciferous vegetables. de Vos RH; Blijleven WG Z Lebensm Unters Forsch; 1988 Dec; 187(6):525-9. PubMed ID: 3066057 [TBL] [Abstract][Full Text] [Related]
14. Hepatic polysubstrate monooxygenase activities in different strains of rats fed cabbage (Brassica oleracea). Miller KW; Stoewsand GS Drug Chem Toxicol; 1983; 6(1):93-110. PubMed ID: 6861663 [TBL] [Abstract][Full Text] [Related]
15. Differences between small and large intestine and liver in the inducibility of microsomal enzymes in response to stimulation by phenobarbitone and betanaphthoflavone in the diet. McDanell RE; McLean AE Biochem Pharmacol; 1984 Jun; 33(12):1977-80. PubMed ID: 6610422 [TBL] [Abstract][Full Text] [Related]
16. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Hanschen FS; Schreiner M Front Plant Sci; 2017; 8():1095. PubMed ID: 28690627 [TBL] [Abstract][Full Text] [Related]
17. Influence of cooking duration of cabbage and presence of colonic microbiota on the excretion of N-acetylcysteine conjugates of allyl isothiocyanate and bioactivity of phase 2 enzymes in F344 rats. Rungapamestry V; Rabot S; Fuller Z; Ratcliffe B; Duncan AJ Br J Nutr; 2008 Apr; 99(4):773-81. PubMed ID: 17967216 [TBL] [Abstract][Full Text] [Related]
18. Glucosinolate Profiling and Expression Analysis of Glucosinolate Biosynthesis Genes Differentiate White Mold Resistant and Susceptible Cabbage Lines. Abuyusuf M; Robin AHK; Lee JH; Jung HJ; Kim HT; Park JI; Nou IS Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30551645 [TBL] [Abstract][Full Text] [Related]
19. Alterations of the hepatic xenobiotic-metabolizing enzymes by a glucosinolate-rich diet in germ-free rats: influence of a pre-induction with phenobarbital. Rabot S; Nugon-Baudon L; Szylit O Br J Nutr; 1993 Jul; 70(1):347-54. PubMed ID: 8399114 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome and Metabolome Analyses of Glucosinolates in Two Broccoli Cultivars Following Jasmonate Treatment for the Induction of Glucosinolate Defense to Trichoplusia ni (Hübner). Ku KM; Becker TM; Juvik JA Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27428958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]