These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36099895)

  • 21. The endoskeletal structures in arthropods: cytology, morphology and evolution.
    Bitsch C; Bitsch J
    Arthropod Struct Dev; 2002 Feb; 30(3):159-77. PubMed ID: 18088953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary history and diversity of arthropod hemocyanins.
    Burmester T
    Micron; 2004; 35(1-2):121-2. PubMed ID: 15036313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.
    Chandran R; Williams L; Hung A; Nowlin K; LaJeunesse D
    Micron; 2016 Mar; 82():74-85. PubMed ID: 26774746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular evolution of the arthropod hemocyanin superfamily.
    Burmester T
    Mol Biol Evol; 2001 Feb; 18(2):184-95. PubMed ID: 11158377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary history of interactions among terrestrial arthropods.
    Grimaldi DA
    Curr Opin Insect Sci; 2022 Jun; 51():100915. PubMed ID: 35364331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments.
    Bruce HS; Patel NH
    Nat Ecol Evol; 2020 Dec; 4(12):1703-1712. PubMed ID: 33262517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles.
    Hu Y; Moczek AP
    Proc Biol Sci; 2021 Jan; 288(1943):20202828. PubMed ID: 33467999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of arthropod hemocyanins and insect storage proteins (hexamerins).
    Beintema JJ; Stam WT; Hazes B; Smidt MP
    Mol Biol Evol; 1994 May; 11(3):493-503. PubMed ID: 8015442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The evolution of insect wings and their sensory apparatus.
    Dickinson MH; Hannaford S; Palka J
    Brain Behav Evol; 1997 Jul; 50(1):13-24. PubMed ID: 9209763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arthropod sensilla: morphology and phylogenetic considerations.
    Hallberg E; Hansson BS
    Microsc Res Tech; 1999 Dec; 47(6):428-39. PubMed ID: 10607382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 400 million years on six legs: on the origin and early evolution of Hexapoda.
    Grimaldi DA
    Arthropod Struct Dev; 2010; 39(2-3):191-203. PubMed ID: 19883792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origin and evolution of arthropod hemocyanins and related proteins.
    Burmester T
    J Comp Physiol B; 2002 Feb; 172(2):95-107. PubMed ID: 11916114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sophisticated digestive systems in early arthropods.
    Vannier J; Liu J; Lerosey-Aubril R; Vinther J; Daley AC
    Nat Commun; 2014 May; 5():3641. PubMed ID: 24785191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota.
    Boudinot BE
    Arthropod Struct Dev; 2018 Nov; 47(6):563-613. PubMed ID: 30419291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AUTHORHYTHMIC ACTIVITY OF THE CEPHALIC GANGLIA OF SOME ARTHROPODS. A COMPARATIVE STUDY.
    SERVIT Z; STREJCKOVA A
    Physiol Bohemoslov (1956); 1963; 12():475-83. PubMed ID: 14097864
    [No Abstract]   [Full Text] [Related]  

  • 36. The evolution of arthropod segmentation: insights from comparisons of gene expression patterns.
    Patel NH
    Dev Suppl; 1994; ():201-7. PubMed ID: 7579520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wings and powered flight: Core novelties in insect evolution.
    Dudley R; Pass G
    Arthropod Struct Dev; 2018 Jul; 47(4):319-321. PubMed ID: 29936299
    [No Abstract]   [Full Text] [Related]  

  • 38. Homeotic genes and diversification of the insect body plan.
    Warren R; Carroll S
    Curr Opin Genet Dev; 1995 Aug; 5(4):459-65. PubMed ID: 7580137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.
    Prokop J; Pecharová M; Nel A; Hörnschemeyer T; Krzemińska E; Krzemiński W; Engel MS
    Curr Biol; 2017 Jan; 27(2):263-269. PubMed ID: 28089512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convergent evolution of optic lobe neuropil in Pancrustacea.
    Strausfeld NJ; Olea-Rowe B
    Arthropod Struct Dev; 2021 Mar; 61():101040. PubMed ID: 33706077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.