BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36099954)

  • 1. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors.
    Li Q; Hu W; Li L; Li Y
    Sci Total Environ; 2023 Jan; 855():158710. PubMed ID: 36099954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components.
    Li Q; Wang Y; Li Y; Li L; Tang M; Hu W; Chen L; Ai S
    Sci Total Environ; 2022 Jun; 825():153862. PubMed ID: 35176361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil conditioners promote the formation of Fe-bound organic carbon and its stability.
    Li Q; Li L; Du H; Lin X; Hu W; Li Y
    J Environ Manage; 2024 Jan; 349():119480. PubMed ID: 37918239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter.
    Chen C; Dong Y; Thompson A
    Environ Sci Technol; 2023 Jul; 57(29):10696-10707. PubMed ID: 37449758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review.
    Di Iorio E; Circelli L; Angelico R; Torrent J; Tan W; Colombo C
    Chemosphere; 2022 Sep; 303(Pt 2):135172. PubMed ID: 35649442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.
    Chen C; Dynes JJ; Wang J; Karunakaran C; Sparks DL
    Environ Sci Technol; 2014 Jun; 48(12):6678-86. PubMed ID: 24837340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary Mineral Formation and Carbon Dynamics during FeS Oxidation in the Presence of Dissolved Organic Matter.
    Ma H; Wang P; Thompson A; Xie Q; Zhu M; Teng HH; Fu P; Liu C; Chen C
    Environ Sci Technol; 2022 Oct; 56(19):14120-14132. PubMed ID: 36151962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance.
    Liu R; Ma T; Qiu W; Du Y; Liu Y
    Sci Total Environ; 2020 Jan; 701():134776. PubMed ID: 31726411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetland soil organic carbon balance is reversed by old carbon and iron oxide additions.
    Ni B; Yu X; Duan X; Zou Y
    Front Microbiol; 2023; 14():1327265. PubMed ID: 38260908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the impact of flooding and salinity on iron oxides-mediated binding of organic carbon in the rhizosphere of Scirpus mariqueter.
    Bi Y; Gao X; Su L; Lei Y; Li T; Dong X; Li X; Yan Z
    Sci Total Environ; 2024 Jan; 908():168447. PubMed ID: 37956840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of Fe-organic matter associations via coprecipitation versus adsorption.
    Chen C; Dynes JJ; Wang J; Sparks DL
    Environ Sci Technol; 2014 Dec; 48(23):13751-9. PubMed ID: 25350793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics.
    Kirsten M; Mikutta R; Vogel C; Thompson A; Mueller CW; Kimaro DN; Bergsma HLT; Feger KH; Kalbitz K
    Sci Rep; 2021 Mar; 11(1):5076. PubMed ID: 33658688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.
    Sowers TD; Adhikari D; Wang J; Yang Y; Sparks DL
    Environ Sci Technol; 2018 Jun; 52(12):6936-6944. PubMed ID: 29770687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils.
    Bhattacharyya A; Campbell AN; Tfaily MM; Lin Y; Kukkadapu RK; Silver WL; Nico PS; Pett-Ridge J
    Environ Sci Technol; 2018 Dec; 52(24):14129-14139. PubMed ID: 30451506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro- and nano-environments of C sequestration in soil: a multi-elemental STXM-NEXAFS assessment of black C and organomineral associations.
    Solomon D; Lehmann J; Wang J; Kinyangi J; Heymann K; Lu Y; Wirick S; Jacobsen C
    Sci Total Environ; 2012 Nov; 438():372-88. PubMed ID: 23022722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequestration of Labile Organic Matter by Secondary Fe Minerals from Chemodenitrification: Insight into Mineral Protection Mechanisms.
    Hu S; Zheng L; Zhang H; Yang Y; Chen G; Meng H; Cheng K; Guo C; Wang Y; Li X; Liu T
    Environ Sci Technol; 2024 Jun; 58(25):11003-11015. PubMed ID: 38807562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress of nano-scale secondary ion mass spectrometry (NanoSIMS) in soil science: Evolution, applications, and challenges.
    Li Q; Chang J; Li L; Lin X; Li Y
    Sci Total Environ; 2023 Dec; 905():167257. PubMed ID: 37741415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits.
    Field HR; Whitaker AH; Henson JA; Duckworth OW
    Sci Total Environ; 2019 Dec; 697():134111. PubMed ID: 31487593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron.
    Barber A; Brandes J; Leri A; Lalonde K; Balind K; Wirick S; Wang J; Gélinas Y
    Sci Rep; 2017 Mar; 7(1):366. PubMed ID: 28336935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Fe-oxidizing bacteria (FeOB) and organic matters in As removal in the heavy-polluted arid soil.
    Ning X; Wang S; Long S; Li L; Dong S; Nan Z
    Ecotoxicol Environ Saf; 2022 Oct; 245():114126. PubMed ID: 36183429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.