These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36100184)

  • 41. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics.
    Carlotta-Jones DI; Purdy K; Kirwan K; Stratford J; Coles SR
    Bioresour Technol; 2020 May; 304():122983. PubMed ID: 32086038
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.
    Lu L; Xing D; Liu B; Ren N
    Water Res; 2012 Mar; 46(4):1015-26. PubMed ID: 22197264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extracellular polymeric substances in electroactive biofilms play a crucial role in improving the efficiency of microbial fuel and electrolysis cells.
    Catal T; Liu H; Kilinc B; Yilancioglu K
    Lett Appl Microbiol; 2024 Mar; 77(3):. PubMed ID: 38366953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.
    Zeng X; Borole AP; Pavlostathis SG
    Environ Sci Technol; 2015 Nov; 49(22):13667-75. PubMed ID: 26503792
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane-based technologies for biohydrogen production: A review.
    El-Qelish M; Hassan GK; Leaper S; Dessì P; Abdel-Karim A
    J Environ Manage; 2022 Aug; 316():115239. PubMed ID: 35568016
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Nickel- and Cerium-Doped Zeolite Composite: An Affordable Cathode Material for Biohydrogen Production in Microbial Electrolysis Cells.
    Wang J; Li Y; Liu M; Li Z; Gao X; Yang D
    Chempluschem; 2020 Oct; 85(10):2290-2297. PubMed ID: 32965086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells.
    Lu L; Xing D; Ren N; Logan BE
    Bioresour Technol; 2012 Nov; 124():68-76. PubMed ID: 22989636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effective conversion of maize straw wastes into bio-hydrogen by two-stage process integrating H2 fermentation and MECs.
    Li YH; Bai YX; Pan CM; Li WW; Zheng HQ; Zhang JN; Fan YT; Hou HW
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18394-403. PubMed ID: 26206124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens.
    Katuri KP; Kamireddy S; Kavanagh P; Muhammad A; Conghaile PÓ; Kumar A; Saikaly PE; Leech D
    Water Res; 2020 Oct; 185():116284. PubMed ID: 32818731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics of consumption of fermentation products by anode-respiring bacteria.
    Torres CI; Marcus AK; Rittmann BE
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):689-97. PubMed ID: 17909786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High current density with spatial distribution of Geobacter in anodic biofilm of the microbial electrolysis desalination and chemical-production cell with enlarged volumetric anode.
    Lan J; Ren Y; Luo H; Wang X; Liu G; Zhang R
    Sci Total Environ; 2022 Jul; 831():154798. PubMed ID: 35367555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs).
    Cheng S; Logan BE
    Water Sci Technol; 2008; 58(4):853-7. PubMed ID: 18776621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The impact of electron donors and anode potentials on the anode-respiring bacteria community.
    Ying X; Guo K; Chen W; Gu Y; Shen D; Zhou Y; Liang Y; Wang Y; Wang M; Feng H
    Appl Microbiol Biotechnol; 2017 Nov; 101(21):7997-8005. PubMed ID: 28944402
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.
    Zhang Y; Angelidaki I
    Water Res; 2012 May; 46(8):2727-36. PubMed ID: 22402271
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes.
    Xu S; Liu H; Fan Y; Schaller R; Jiao J; Chaplen F
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):871-80. PubMed ID: 22080340
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancing biohydrogen production from sugar industry wastewater using Ni, Ni-Co and Ni-Co-P electrodeposits as cathodes in microbial electrolysis cells.
    Chaurasia AK; Mondal P
    Chemosphere; 2022 Jan; 286(Pt 3):131728. PubMed ID: 34416586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.