These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36100397)

  • 21. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.
    Wutz A; Weisz N; Braun C; Melcher D
    J Neurosci; 2014 Jan; 34(4):1554-65. PubMed ID: 24453342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices.
    Bauer M; Kennett S; Driver J
    J Neurophysiol; 2012 May; 107(9):2342-51. PubMed ID: 22323628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception.
    Capilla A; Schoffelen JM; Paterson G; Thut G; Gross J
    Cereb Cortex; 2014 Feb; 24(2):550-61. PubMed ID: 23118197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local entrainment of α oscillations by visual stimuli causes cyclic modulation of perception.
    Spaak E; de Lange FP; Jensen O
    J Neurosci; 2014 Mar; 34(10):3536-44. PubMed ID: 24599454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.
    Wiesman AI; Heinrichs-Graham E; Proskovec AL; McDermott TJ; Wilson TW
    Hum Brain Mapp; 2017 Oct; 38(10):5128-5140. PubMed ID: 28714584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholinergic enhancement of visual attention and neural oscillations in the human brain.
    Bauer M; Kluge C; Bach D; Bradbury D; Heinze HJ; Dolan RJ; Driver J
    Curr Biol; 2012 Mar; 22(5):397-402. PubMed ID: 22305751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oscillatory Bursts in Parietal Cortex Reflect Dynamic Attention between Multiple Objects and Ensembles.
    Wutz A; Zazio A; Weisz N
    J Neurosci; 2020 Sep; 40(36):6927-6937. PubMed ID: 32753515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prestimulus oscillatory alpha power and connectivity patterns predispose perceptual integration of an audio and a tactile stimulus.
    Leonardelli E; Braun C; Weisz N; Lithari C; Occelli V; Zampini M
    Hum Brain Mapp; 2015 Sep; 36(9):3486-98. PubMed ID: 26109518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Power and Phase of Alpha Oscillations Reveal an Interaction between Spatial and Temporal Visual Attention.
    Kizuk SA; Mathewson KE
    J Cogn Neurosci; 2017 Mar; 29(3):480-494. PubMed ID: 28129063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events.
    Grabot L; Kösem A; Azizi L; van Wassenhove V
    J Cogn Neurosci; 2017 Sep; 29(9):1566-1582. PubMed ID: 28493808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms?
    Banerjee S; Snyder AC; Molholm S; Foxe JJ
    J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. α oscillations related to anticipatory attention follow temporal expectations.
    Rohenkohl G; Nobre AC
    J Neurosci; 2011 Oct; 31(40):14076-84. PubMed ID: 21976492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct Cortical Networks Subserve Spatio-temporal Sampling in Vision through Different Oscillatory Rhythms.
    Ronconi L; Balestrieri E; Baldauf D; Melcher D
    J Cogn Neurosci; 2024 Apr; 36(4):572-589. PubMed ID: 37172123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Role for Bottom-Up Alpha Oscillations in Temporal Integration.
    Karvat G; Landau AN
    J Cogn Neurosci; 2024 Apr; 36(4):632-639. PubMed ID: 37713671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults.
    Heideman SG; Rohenkohl G; Chauvin JJ; Palmer CE; van Ede F; Nobre AC
    Neuroimage; 2018 Sep; 178():46-56. PubMed ID: 29733953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillatory recruitment of bilateral visual cortex during spatial attention to competing rhythmic inputs.
    Gray MJ; Frey HP; Wilson TJ; Foxe JJ
    J Neurosci; 2015 Apr; 35(14):5489-503. PubMed ID: 25855167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial attention modulates visual gamma oscillations across the human ventral stream.
    Magazzini L; Singh KD
    Neuroimage; 2018 Feb; 166():219-229. PubMed ID: 29104149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple oscillatory rhythms determine the temporal organization of perception.
    Ronconi L; Oosterhof NN; Bonmassar C; Melcher D
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13435-13440. PubMed ID: 29203678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-stimulus alpha-band power and phase fluctuations originate from different neural sources and exert distinct impact on stimulus-evoked responses.
    Zazio A; Ruhnau P; Weisz N; Wutz A
    Eur J Neurosci; 2022 Jun; 55(11-12):3178-3190. PubMed ID: 33539589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.