BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36100631)

  • 1. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness.
    Kim K; Calabrese P; Wang S; Qin C; Rao Y; Feng P; Chen XS
    Sci Rep; 2022 Sep; 12(1):14972. PubMed ID: 36100631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Roles of APOBEC-mediated RNA Editing in SARS-CoV-2 Mutations, Replication and Fitness.
    Kim K; Calabrese P; Wang S; Qin C; Rao Y; Feng P; Chen XS
    Res Sq; 2022 Apr; ():. PubMed ID: 35441170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Roles of APOBEC-mediated RNA Editing in SARS-CoV-2 Mutations, Replication and Fitness.
    Kim K; Calabrese P; Wang S; Qin C; Rao Y; Feng P; Chen XS
    bioRxiv; 2022 Apr; ():. PubMed ID: 34981048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution.
    Ratcliff J; Simmonds P
    Virology; 2021 Apr; 556():62-72. PubMed ID: 33545556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2.
    Di Giorgio S; Martignano F; Torcia MG; Mattiuz G; Conticello SG
    Sci Adv; 2020 Jun; 6(25):eabb5813. PubMed ID: 32596474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of A-to-I RNA editing in infections by RNA viruses: Possible implications for SARS-CoV-2 infection.
    Vlachogiannis NI; Verrou KM; Stellos K; Sfikakis PP; Paraskevis D
    Clin Immunol; 2021 May; 226():108699. PubMed ID: 33639276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive C->U transition biases in the genomes of a wide range of mammalian RNA viruses; potential associations with transcriptional mutations, damage- or host-mediated editing of viral RNA.
    Simmonds P; Ansari MA
    PLoS Pathog; 2021 Jun; 17(6):e1009596. PubMed ID: 34061905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories.
    Simmonds P
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32581081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome.
    Nakata Y; Ode H; Kubota M; Kasahara T; Matsuoka K; Sugimoto A; Imahashi M; Yokomaku Y; Iwatani Y
    Nucleic Acids Res; 2023 Jan; 51(2):783-795. PubMed ID: 36610792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The substitution spectra of coronavirus genomes.
    Forni D; Cagliani R; Pontremoli C; Clerici M; Sironi M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34518866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses.
    Kosuge M; Furusawa-Nishii E; Ito K; Saito Y; Ogasawara K
    Sci Rep; 2020 Oct; 10(1):17766. PubMed ID: 33082451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronavirus genomes carry the signatures of their habitats.
    Wei Y; Silke JR; Aris P; Xia X
    PLoS One; 2020; 15(12):e0244025. PubMed ID: 33351847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host-directed editing of the SARS-CoV-2 genome.
    Mourier T; Sadykov M; Carr MJ; Gonzalez G; Hall WW; Pain A
    Biochem Biophys Res Commun; 2021 Jan; 538():35-39. PubMed ID: 33234239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2.
    Ringlander J; Fingal J; Kann H; Prakash K; Rydell G; Andersson M; Martner A; Lindh M; Horal P; Hellstrand K; Kann M
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35064076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AID and APOBECs as Multifaceted Intrinsic Virus-Restricting Factors: Emerging Concepts in the Light of COVID-19.
    Meshcheryakova A; Pietschmann P; Zimmermann P; Rogozin IB; Mechtcheriakova D
    Front Immunol; 2021; 12():690416. PubMed ID: 34276680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commentary on "Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2".
    Martignano F; Di Giorgio S; Mattiuz G; Conticello SG
    J Appl Genet; 2022 May; 63(2):423-428. PubMed ID: 35279801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APOBECs orchestrate genomic and epigenomic editing across health and disease.
    Cervantes-Gracia K; Gramalla-Schmitz A; Weischedel J; Chahwan R
    Trends Genet; 2021 Nov; 37(11):1028-1043. PubMed ID: 34353635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory variants of APOBEC3 genes potentially associate with COVID-19 severity in populations with African ancestry.
    Zhang K; Chen F; Shen HY; Zhang PP; Gao H; Peng H; Luo YS; Cheng ZS
    Sci Rep; 2023 Dec; 13(1):22435. PubMed ID: 38105291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA binding to APOBEC deaminases; Not simply a substrate for C to U editing.
    Smith HC
    RNA Biol; 2017 Sep; 14(9):1153-1165. PubMed ID: 27869537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of SARS-CoV-2 haplotypes and genomic sequences during 2020 in Victoria, Australia, in the context of putative deficits in innate immune deaminase anti-viral responses.
    Lindley RA; Steele EJ
    Scand J Immunol; 2021 Nov; 94(5):e13100. PubMed ID: 34940992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.