BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36100892)

  • 1. Transforming L1000 profiles to RNA-seq-like profiles with deep learning.
    Jeon M; Xie Z; Evangelista JE; Wojciechowicz ML; Clarke DJB; Ma'ayan A
    BMC Bioinformatics; 2022 Sep; 23(1):374. PubMed ID: 36100892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining influential genes based on deep learning.
    Kong L; Chen Y; Xu F; Xu M; Li Z; Fang J; Zhang L; Pian C
    BMC Bioinformatics; 2021 Jan; 22(1):27. PubMed ID: 33482718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L1000CDS
    Duan Q; Reid SP; Clark NR; Wang Z; Fernandez NF; Rouillard AD; Readhead B; Tritsch SR; Hodos R; Hafner M; Niepel M; Sorger PK; Dudley JT; Bavari S; Panchal RG; Ma'ayan A
    NPJ Syst Biol Appl; 2016; 2():16015-. PubMed ID: 28413689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compound signature detection on LINCS L1000 big data.
    Liu C; Su J; Yang F; Wei K; Ma J; Zhou X
    Mol Biosyst; 2015 Mar; 11(3):714-22. PubMed ID: 25609570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DOSE-L1000: unveiling the intricate landscape of compound-induced transcriptional changes.
    Wang J; Novick S
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37952162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression inference with deep learning.
    Chen Y; Li Y; Narayan R; Subramanian A; Xie X
    Bioinformatics; 2016 Jun; 32(12):1832-9. PubMed ID: 26873929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. l1kdeconv: an R package for peak calling analysis with LINCS L1000 data.
    Li Z; Li J; Yu P
    BMC Bioinformatics; 2017 Jul; 18(1):356. PubMed ID: 28750623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Quality Control Analysis of LINCS Data.
    Cheng L; Li L
    CPT Pharmacometrics Syst Pharmacol; 2016 Nov; 5(11):588-598. PubMed ID: 27796074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
    Subramanian A; Narayan R; Corsello SM; Peck DD; Natoli TE; Lu X; Gould J; Davis JF; Tubelli AA; Asiedu JK; Lahr DL; Hirschman JE; Liu Z; Donahue M; Julian B; Khan M; Wadden D; Smith IC; Lam D; Liberzon A; Toder C; Bagul M; Orzechowski M; Enache OM; Piccioni F; Johnson SA; Lyons NJ; Berger AH; Shamji AF; Brooks AN; Vrcic A; Flynn C; Rosains J; Takeda DY; Hu R; Davison D; Lamb J; Ardlie K; Hogstrom L; Greenside P; Gray NS; Clemons PA; Silver S; Wu X; Zhao WN; Read-Button W; Wu X; Haggarty SJ; Ronco LV; Boehm JS; Schreiber SL; Doench JG; Bittker JA; Root DE; Wong B; Golub TR
    Cell; 2017 Nov; 171(6):1437-1452.e17. PubMed ID: 29195078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Getting Started with LINCS Datasets and Tools.
    Xie Z; Kropiwnicki E; Wojciechowicz ML; Jagodnik KM; Shu I; Bailey A; Clarke DJB; Jeon M; Evangelista JE; V Kuleshov M; Lachmann A; Parigi AA; Sanchez JM; Jenkins SL; Ma'ayan A
    Curr Protoc; 2022 Jul; 2(7):e487. PubMed ID: 35876555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking chemicals, genes and morphological perturbations to diseases.
    Cerisier N; Dafniet B; Badel A; Taboureau O
    Toxicol Appl Pharmacol; 2023 Feb; 461():116407. PubMed ID: 36736439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation.
    Wang Y; Chen Q; Shao H; Zhang R; Shen H
    Comput Biol Med; 2024 Feb; 169():107828. PubMed ID: 38101117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach.
    Zhang Y; Liu X; MacLeod J; Liu J
    BMC Genomics; 2018 Dec; 19(1):971. PubMed ID: 30591034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.
    Duan Q; Flynn C; Niepel M; Hafner M; Muhlich JL; Fernandez NF; Rouillard AD; Tan CM; Chen EY; Golub TR; Sorger PK; Subramanian A; Ma'ayan A
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W449-60. PubMed ID: 24906883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dex-Benchmark: datasets and code to evaluate algorithms for transcriptomics data analysis.
    Xie Z; Chen C; Ma'ayan A
    PeerJ; 2023; 11():e16351. PubMed ID: 37953774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer learning of condition-specific perturbation in gene interactions improves drug response prediction.
    Bang D; Koo B; Kim S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i130-i139. PubMed ID: 38940127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking causal reasoning algorithms for gene expression-based compound mechanism of action analysis.
    Hosseini-Gerami L; Higgins IA; Collier DA; Laing E; Evans D; Broughton H; Bender A
    BMC Bioinformatics; 2023 Apr; 24(1):154. PubMed ID: 37072707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Benchmarks on L1000 Gene Expression Data.
    McDermott MBA; Wang J; Zhao WN; Sheridan SD; Szolovits P; Kohane I; Haggarty SJ; Perlis RH
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1846-1857. PubMed ID: 30990190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders.
    Shayakhmetov R; Kuznetsov M; Zhebrak A; Kadurin A; Nikolenko S; Aliper A; Polykovskiy D
    Front Pharmacol; 2020; 11():269. PubMed ID: 32362822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Enables Fast and Accurate Imputation of Gene Expression.
    Viñas R; Azevedo T; Gamazon ER; Liò P
    Front Genet; 2021; 12():624128. PubMed ID: 33927746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.