BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36100892)

  • 21. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L1000 Viewer: A Search Engine and Web Interface for the LINCS Data Repository.
    Musa A; Tripathi S; Dehmer M; Emmert-Streib F
    Front Genet; 2019; 10():557. PubMed ID: 31258549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders.
    Shayakhmetov R; Kuznetsov M; Zhebrak A; Kadurin A; Nikolenko S; Aliper A; Polykovskiy D
    Front Pharmacol; 2020; 11():269. PubMed ID: 32362822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-course RNA-seq analysis provides an improved understanding of gene regulation during the formation of nodule-like structures in rice.
    Thomas J; Hiltenbrand R; Bowman MJ; Kim HR; Winn ME; Mukherjee A
    Plant Mol Biol; 2020 May; 103(1-2):113-128. PubMed ID: 32086696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network.
    Shao X; Yang H; Zhuang X; Liao J; Yang P; Cheng J; Lu X; Chen H; Fan X
    Nucleic Acids Res; 2021 Dec; 49(21):e122. PubMed ID: 34500471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conditional generative adversarial network for gene expression inference.
    Wang X; Ghasedi Dizaji K; Huang H
    Bioinformatics; 2018 Sep; 34(17):i603-i611. PubMed ID: 30423066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporating Differential Gene Expression Analysis with Predictive Biomarkers to Identify Novel Therapeutic Drugs for Fuchs Endothelial Corneal Dystrophy.
    Wen H; Gallo RA; Huang X; Cai J; Mei S; Farooqi AA; Zhao J; Tao W
    J Ophthalmol; 2021; 2021():5580595. PubMed ID: 34258047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Navigating Transcriptomic Connectivity Mapping Workflows to Link Chemicals with Bioactivities.
    Shah I; Bundy J; Chambers B; Everett LJ; Haggard D; Harrill J; Judson RS; Nyffeler J; Patlewicz G
    Chem Res Toxicol; 2022 Nov; 35(11):1929-1949. PubMed ID: 36301716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes.
    Luo Q; Mo S; Xue Y; Zhang X; Gu Y; Wu L; Zhang J; Sun L; Liu M; Hu Y
    BMC Bioinformatics; 2021 Jun; 22(1):318. PubMed ID: 34116627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepSide: A Deep Learning Approach for Drug Side Effect Prediction.
    Uner OC; Kuru HI; Cinbis RG; Tastan O; Cicek AE
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):330-339. PubMed ID: 34995191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3'Pool-seq: an optimized cost-efficient and scalable method of whole-transcriptome gene expression profiling.
    Sholder G; Lanz TA; Moccia R; Quan J; Aparicio-Prat E; Stanton R; Xi HS
    BMC Genomics; 2020 Jan; 21(1):64. PubMed ID: 31959126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning of gene relationships from single cell time-course expression data.
    Yuan Y; Bar-Joseph Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembly-free rapid differential gene expression analysis in non-model organisms using DNA-protein alignment.
    Shrestha AMS; B Guiao JE; R Santiago KC
    BMC Genomics; 2022 Feb; 23(1):97. PubMed ID: 35120462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of drug efficacy from transcriptional profiles with deep learning.
    Zhu J; Wang J; Wang X; Gao M; Guo B; Gao M; Liu J; Yu Y; Wang L; Kong W; An Y; Liu Z; Sun X; Huang Z; Zhou H; Zhang N; Zheng R; Xie Z
    Nat Biotechnol; 2021 Nov; 39(11):1444-1452. PubMed ID: 34140681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug Signature Detection Based on L1000 Genomic and Proteomic Big Data.
    Chen W; Zhou X
    Methods Mol Biol; 2019; 1939():273-286. PubMed ID: 30848467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug-induced adverse events prediction with the LINCS L1000 data.
    Wang Z; Clark NR; Ma'ayan A
    Bioinformatics; 2016 Aug; 32(15):2338-45. PubMed ID: 27153606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes.
    Mancuso CA; Canfield JL; Singla D; Krishnan A
    Nucleic Acids Res; 2020 Dec; 48(21):e125. PubMed ID: 33074331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factor-specific generative pattern from large-scale drug-induced gene expression profile.
    Ahn SH; Kim JH
    Sci Rep; 2023 Apr; 13(1):6339. PubMed ID: 37072452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Throughput Strategies for the Discovery of Anticancer Drugs by Targeting Transcriptional Reprogramming.
    Huang L; Yi X; Yu X; Wang Y; Zhang C; Qin L; Guo D; Zhou S; Zhang G; Deng Y; Bao X; Wang D
    Front Oncol; 2021; 11():762023. PubMed ID: 34660328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.