These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36100892)

  • 21. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data.
    Qiu Y; Lu T; Lim H; Xie L
    Bioinformatics; 2020 May; 36(9):2787-2795. PubMed ID: 32003771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. L1000 Viewer: A Search Engine and Web Interface for the LINCS Data Repository.
    Musa A; Tripathi S; Dehmer M; Emmert-Streib F
    Front Genet; 2019; 10():557. PubMed ID: 31258549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders.
    Shayakhmetov R; Kuznetsov M; Zhebrak A; Kadurin A; Nikolenko S; Aliper A; Polykovskiy D
    Front Pharmacol; 2020; 11():269. PubMed ID: 32362822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-course RNA-seq analysis provides an improved understanding of gene regulation during the formation of nodule-like structures in rice.
    Thomas J; Hiltenbrand R; Bowman MJ; Kim HR; Winn ME; Mukherjee A
    Plant Mol Biol; 2020 May; 103(1-2):113-128. PubMed ID: 32086696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network.
    Shao X; Yang H; Zhuang X; Liao J; Yang P; Cheng J; Lu X; Chen H; Fan X
    Nucleic Acids Res; 2021 Dec; 49(21):e122. PubMed ID: 34500471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conditional generative adversarial network for gene expression inference.
    Wang X; Ghasedi Dizaji K; Huang H
    Bioinformatics; 2018 Sep; 34(17):i603-i611. PubMed ID: 30423066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporating Differential Gene Expression Analysis with Predictive Biomarkers to Identify Novel Therapeutic Drugs for Fuchs Endothelial Corneal Dystrophy.
    Wen H; Gallo RA; Huang X; Cai J; Mei S; Farooqi AA; Zhao J; Tao W
    J Ophthalmol; 2021; 2021():5580595. PubMed ID: 34258047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Navigating Transcriptomic Connectivity Mapping Workflows to Link Chemicals with Bioactivities.
    Shah I; Bundy J; Chambers B; Everett LJ; Haggard D; Harrill J; Judson RS; Nyffeler J; Patlewicz G
    Chem Res Toxicol; 2022 Nov; 35(11):1929-1949. PubMed ID: 36301716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes.
    Luo Q; Mo S; Xue Y; Zhang X; Gu Y; Wu L; Zhang J; Sun L; Liu M; Hu Y
    BMC Bioinformatics; 2021 Jun; 22(1):318. PubMed ID: 34116627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepSide: A Deep Learning Approach for Drug Side Effect Prediction.
    Uner OC; Kuru HI; Cinbis RG; Tastan O; Cicek AE
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):330-339. PubMed ID: 34995191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3'Pool-seq: an optimized cost-efficient and scalable method of whole-transcriptome gene expression profiling.
    Sholder G; Lanz TA; Moccia R; Quan J; Aparicio-Prat E; Stanton R; Xi HS
    BMC Genomics; 2020 Jan; 21(1):64. PubMed ID: 31959126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning of gene relationships from single cell time-course expression data.
    Yuan Y; Bar-Joseph Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of drug efficacy from transcriptional profiles with deep learning.
    Zhu J; Wang J; Wang X; Gao M; Guo B; Gao M; Liu J; Yu Y; Wang L; Kong W; An Y; Liu Z; Sun X; Huang Z; Zhou H; Zhang N; Zheng R; Xie Z
    Nat Biotechnol; 2021 Nov; 39(11):1444-1452. PubMed ID: 34140681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug Signature Detection Based on L1000 Genomic and Proteomic Big Data.
    Chen W; Zhou X
    Methods Mol Biol; 2019; 1939():273-286. PubMed ID: 30848467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug-induced adverse events prediction with the LINCS L1000 data.
    Wang Z; Clark NR; Ma'ayan A
    Bioinformatics; 2016 Aug; 32(15):2338-45. PubMed ID: 27153606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes.
    Mancuso CA; Canfield JL; Singla D; Krishnan A
    Nucleic Acids Res; 2020 Dec; 48(21):e125. PubMed ID: 33074331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factor-specific generative pattern from large-scale drug-induced gene expression profile.
    Ahn SH; Kim JH
    Sci Rep; 2023 Apr; 13(1):6339. PubMed ID: 37072452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Throughput Strategies for the Discovery of Anticancer Drugs by Targeting Transcriptional Reprogramming.
    Huang L; Yi X; Yu X; Wang Y; Zhang C; Qin L; Guo D; Zhou S; Zhang G; Deng Y; Bao X; Wang D
    Front Oncol; 2021; 11():762023. PubMed ID: 34660328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.