These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 36100925)
21. Prognostic models for heart failure in patients with type 2 diabetes: a systematic review and meta-analysis. Kostopoulos G; Doundoulakis I; Toulis KA; Karagiannis T; Tsapas A; Haidich AB Heart; 2023 Sep; 109(19):1436-1442. PubMed ID: 36898704 [TBL] [Abstract][Full Text] [Related]
22. Electronic Health Record-Based Absolute Risk Prediction Model for Esophageal Cancer in the Chinese Population: Model Development and External Validation. Han Y; Zhu X; Hu Y; Yu C; Guo Y; Hang D; Pang Y; Pei P; Ma H; Sun D; Yang L; Chen Y; Du H; Yu M; Chen J; Chen Z; Huo D; Jin G; Lv J; Hu Z; Shen H; Li L JMIR Public Health Surveill; 2023 Mar; 9():e43725. PubMed ID: 36781293 [TBL] [Abstract][Full Text] [Related]
23. Development and validation of risk prediction models for new-onset type 2 diabetes in adults with impaired fasting glucose. Zheng M; Wu S; Chen S; Zhang X; Zuo Y; Tong C; Li H; Li C; Yang X; Wu L; Wang A; Zheng D Diabetes Res Clin Pract; 2023 Mar; 197():110571. PubMed ID: 36758640 [TBL] [Abstract][Full Text] [Related]
24. External validation and calibration of risk equations for prediction of diabetic kidney diseases among patients with type 2 diabetes in Taiwan. Su HY; Nguyen TTD; Lin WH; Ou HT; Kuo S Cardiovasc Diabetol; 2024 Oct; 23(1):357. PubMed ID: 39385193 [TBL] [Abstract][Full Text] [Related]
25. Lipidomic risk score independently and cost-effectively predicts risk of future type 2 diabetes: results from diverse cohorts. Mamtani M; Kulkarni H; Wong G; Weir JM; Barlow CK; Dyer TD; Almasy L; Mahaney MC; Comuzzie AG; Glahn DC; Magliano DJ; Zimmet P; Shaw J; Williams-Blangero S; Duggirala R; Blangero J; Meikle PJ; Curran JE Lipids Health Dis; 2016 Apr; 15():67. PubMed ID: 27044508 [TBL] [Abstract][Full Text] [Related]
26. Non-invasive Risk Prediction Models in Identifying Undiagnosed Type 2 Diabetes or Predicting Future Incident Cases in the Iranian Population. Lotfaliany M; Hadaegh F; Asgari S; Mansournia MA; Azizi F; Oldenburg B; Khalili D Arch Iran Med; 2019 Mar; 22(3):116-124. PubMed ID: 31029067 [TBL] [Abstract][Full Text] [Related]
27. Risk Prediction Scores for Mortality, Cerebrovascular, and Heart Disease Among Chinese People With Type 2 Diabetes. Quan J; Pang D; Li TK; Choi CH; Siu SC; Tang SY; Wat NM; Woo J; Lau ZY; Tan KB; Leung GM J Clin Endocrinol Metab; 2019 Dec; 104(12):5823-5830. PubMed ID: 31287503 [TBL] [Abstract][Full Text] [Related]
28. Performance of European prediction models for classification of type 1 and type 2 diabetes in Indians. Venkatesan U; Amutha A; Jones AG; Shields BM; Anjana RM; Unnikrishnan R; Mappillairaju B; Mohan V Diabetes Metab Syndr; 2024 Apr; 18(4):103007. PubMed ID: 38636306 [TBL] [Abstract][Full Text] [Related]
29. Validation and development of models using clinical, biochemical and ultrasound markers for predicting pre-eclampsia: an individual participant data meta-analysis. Allotey J; Snell KI; Smuk M; Hooper R; Chan CL; Ahmed A; Chappell LC; von Dadelszen P; Dodds J; Green M; Kenny L; Khalil A; Khan KS; Mol BW; Myers J; Poston L; Thilaganathan B; Staff AC; Smith GC; Ganzevoort W; Laivuori H; Odibo AO; Ramírez JA; Kingdom J; Daskalakis G; Farrar D; Baschat AA; Seed PT; Prefumo F; da Silva Costa F; Groen H; Audibert F; Masse J; Skråstad RB; Salvesen KÅ; Haavaldsen C; Nagata C; Rumbold AR; Heinonen S; Askie LM; Smits LJ; Vinter CA; Magnus PM; Eero K; Villa PM; Jenum AK; Andersen LB; Norman JE; Ohkuchi A; Eskild A; Bhattacharya S; McAuliffe FM; Galindo A; Herraiz I; Carbillon L; Klipstein-Grobusch K; Yeo S; Teede HJ; Browne JL; Moons KG; Riley RD; Thangaratinam S Health Technol Assess; 2020 Dec; 24(72):1-252. PubMed ID: 33336645 [TBL] [Abstract][Full Text] [Related]
30. Handgrip strength improves prediction of type 2 diabetes: a prospective cohort study. Kunutsor SK; Voutilainen A; Laukkanen JA Ann Med; 2020 Dec; 52(8):471-478. PubMed ID: 32840381 [TBL] [Abstract][Full Text] [Related]
31. Risk prediction models for type 2 diabetes using either fasting plasma glucose or HbA1c in Chinese, Malay, and Indians: Results from three multi-ethnic Singapore cohorts. Seah JYH; Yao J; Hong Y; Lim CGY; Sabanayagam C; Nusinovici S; Gardner DS; Loh M; Müller-Riemenschneider F; Tan CS; Yeo KK; Wong TY; Cheng CY; Ma S; Tai ES; Chambers JC; van Dam RM; Sim X Diabetes Res Clin Pract; 2023 Sep; 203():110878. PubMed ID: 37591346 [TBL] [Abstract][Full Text] [Related]
32. External validation of the European risk assessment tool for chronic cardio-metabolic disorders in a Middle Eastern population. Asgari S; Moosaie F; Khalili D; Azizi F; Hadaegh F J Transl Med; 2020 Jul; 18(1):267. PubMed ID: 32615996 [TBL] [Abstract][Full Text] [Related]
33. Addressing practical issues of predictive models translation into everyday practice and public health management: a combined model to predict the risk of type 2 diabetes improves incidence prediction and reduces the prevalence of missing risk predictions. Vettoretti M; Longato E; Zandonà A; Li Y; Pagán JA; Siscovick D; Carnethon MR; Bertoni AG; Facchinetti A; Di Camillo B BMJ Open Diabetes Res Care; 2020 Jul; 8(1):. PubMed ID: 32747386 [TBL] [Abstract][Full Text] [Related]
34. [Application of the China-PAR stroke risk equations in a rural northern Chinese population]. Tang X; Zhang DD; Liu XF; Liu QP; Cao Y; Li N; Huang SP; Dou HD; Gao P; Hu YH Beijing Da Xue Xue Bao Yi Xue Ban; 2020 Jun; 52(3):444-450. PubMed ID: 32541976 [TBL] [Abstract][Full Text] [Related]
35. HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability. Di Camillo B; Hakaste L; Sambo F; Gabriel R; Kravic J; Isomaa B; Tuomilehto J; Alonso M; Longato E; Facchinetti A; Groop LC; Cobelli C; Tuomi T Eur J Endocrinol; 2018 Apr; 178(4):331-341. PubMed ID: 29371336 [TBL] [Abstract][Full Text] [Related]
36. Identical anthropometric characteristics of impaired fasting glucose combined with impaired glucose tolerance and newly diagnosed type 2 diabetes: anthropometric indicators to predict hyperglycaemia in a community-based prospective cohort study in southwest China. Zhang F; Wan Q; Cao H; Tang L; Li D; Lü Q; Yan Z; Li J; Yang Q; Zhang Y; Tong N BMJ Open; 2018 May; 8(5):e019735. PubMed ID: 29743321 [TBL] [Abstract][Full Text] [Related]
37. Comparative validity of 3 diabetes mellitus risk prediction scoring models in a multiethnic US cohort: the Multi-Ethnic Study of Atherosclerosis. Mann DM; Bertoni AG; Shimbo D; Carnethon MR; Chen H; Jenny NS; Muntner P Am J Epidemiol; 2010 May; 171(9):980-8. PubMed ID: 20375194 [TBL] [Abstract][Full Text] [Related]
38. Machine Learning to Predict the Risk of Incident Heart Failure Hospitalization Among Patients With Diabetes: The WATCH-DM Risk Score. Segar MW; Vaduganathan M; Patel KV; McGuire DK; Butler J; Fonarow GC; Basit M; Kannan V; Grodin JL; Everett B; Willett D; Berry J; Pandey A Diabetes Care; 2019 Dec; 42(12):2298-2306. PubMed ID: 31519694 [TBL] [Abstract][Full Text] [Related]
39. Risk prediction model for lung cancer incorporating metabolic markers: Development and internal validation in a Chinese population. Lyu Z; Li N; Chen S; Wang G; Tan F; Feng X; Li X; Wen Y; Yang Z; Wang Y; Li J; Chen H; Lin C; Ren J; Shi J; Wu S; Dai M; He J Cancer Med; 2020 Jun; 9(11):3983-3994. PubMed ID: 32253829 [TBL] [Abstract][Full Text] [Related]
40. The validation of cardiovascular risk scores for patients with type 2 diabetes mellitus. van der Leeuw J; van Dieren S; Beulens JW; Boeing H; Spijkerman AM; van der Graaf Y; van der A DL; Nöthlings U; Visseren FL; Rutten GE; Moons KG; van der Schouw YT; Peelen LM Heart; 2015 Feb; 101(3):222-9. PubMed ID: 25256148 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]