BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36102169)

  • 1. Wavefront aberrometry repeatability and agreement-A comparison between Pentacam AXL Wave, iTrace and OPD-Scan III.
    Wan KH; Liao XL; Yu M; Tsui RWY; Chow VWS; Chong KKL; Chan TCY
    Ophthalmic Physiol Opt; 2022 Nov; 42(6):1326-1337. PubMed ID: 36102169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the comparability and repeatability of four wavefront aberrometers.
    Visser N; Berendschot TT; Verbakel F; Tan AN; de Brabander J; Nuijts RM
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1302-11. PubMed ID: 21051697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision and agreement of higher order aberrations measured with ray tracing and Hartmann-Shack aberrometers.
    Xu Z; Hua Y; Qiu W; Li G; Wu Q
    BMC Ophthalmol; 2018 Jan; 18(1):18. PubMed ID: 29374460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeatability of internal aberrometry with a new simultaneous capture aberrometer/corneal topographer.
    Gifford P; Swarbrick HA
    Optom Vis Sci; 2012 Jun; 89(6):929-38. PubMed ID: 22543999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of tear optics on the repeatability of Pentacam AXL wave and iTrace in measuring anterior segment parameters and aberrations.
    Kundu G; Shetty R; Khamar P; Gupta S; Mullick R; Ganesan VL; D'Souza S
    Indian J Ophthalmol; 2022 Apr; 70(4):1150-1157. PubMed ID: 35326004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision of a commercial hartmann-shack aberrometer: limits of total wavefront laser vision correction.
    López-Miguel A; Maldonado MJ; Belzunce A; Barrio-Barrio J; Coco-Martín MB; Nieto JC
    Am J Ophthalmol; 2012 Nov; 154(5):799-807.e5. PubMed ID: 22902046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeatability and Agreement of a New Scheimpflug Device and a Hartmann-Shack Aberrometer With a Ray-Tracing Aberrometer in Normal, Keratoconus, and CXL Groups.
    Kundu G; Shetty R; Ranade R; Trivedi D; Lalgudi VG; Nuijts RMMA; Annavajjhala S; Khamar P
    J Refract Surg; 2022 Mar; 38(3):201-208. PubMed ID: 35275005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of higher order wavefront aberrations with four aberrometers.
    Cook WH; McKelvie J; Wallace HB; Misra SL
    Indian J Ophthalmol; 2019 Jul; 67(7):1030-1035. PubMed ID: 31238402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular higher-order aberrations in myopia and skiascopic wavefront repeatability.
    Zadok D; Levy Y; Segal O; Barkana Y; Morad Y; Avni I
    J Cataract Refract Surg; 2005 Jun; 31(6):1128-32. PubMed ID: 16039485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeatability and agreement of wavefront aberrations of a new hybrid topographer and aberrometer in healthy eyes.
    Shetty R; Trivedi D; Ranade R; Arun S; Khamar P; Kundu G
    J Cataract Refract Surg; 2022 Apr; 48(4):408-416. PubMed ID: 34393184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OPD-Scan III: a repeatability and inter-device agreement study of a multifunctional device in emmetropia, ametropia, and keratoconus.
    Asgari S; Hashemi H; Jafarzadehpur E; Mohamadi A; Rezvan F; Fotouhi A
    Int Ophthalmol; 2016 Oct; 36(5):697-705. PubMed ID: 26854319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor.
    López-Miguel A; Martínez-Almeida L; González-García MJ; Coco-Martín MB; Sobrado-Calvo P; Maldonado MJ
    J Cataract Refract Surg; 2013 Feb; 39(2):242-9. PubMed ID: 23142546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Ocular Wavefront Aberration Measurements Obtained Using Two Hartmann-Shack Wavefront Aberrometers.
    Koh S; Inoue R; Iwamoto Y; Mihashi T; Soma T; Maeda N; Nishida K
    Eye Contact Lens; 2023 Mar; 49(3):98-103. PubMed ID: 36729105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision of higher order aberration repeatability with NIDEK OPD-scan retinoscopic aberrometry.
    Barreto J; Netto MV; Cigna A; Bechara S; Kara-José N
    J Refract Surg; 2006 Nov; 22(9 Suppl):S1037-40. PubMed ID: 17444090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of internal and total optical aberrations for 2 aberrometers: iTrace and OPD scan.
    Won JB; Kim SW; Kim EK; Ha BJ; Kim TI
    Korean J Ophthalmol; 2008 Dec; 22(4):210-3. PubMed ID: 19096236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrometry Repeatability and Agreement with Autorefraction.
    Nguyen MT; Berntsen DA
    Optom Vis Sci; 2017 Sep; 94(9):886-893. PubMed ID: 28727613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of higher order aberrations measured by NIDEK OPD-Scan dynamic skiascopy and Zeiss WASCA Hartmann-Shack aberrometers.
    Cerviño A; Hosking SL; Montés-Micó R
    J Refract Surg; 2008 Oct; 24(8):790-6. PubMed ID: 18856232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the VISX wavescan and NIDEK OPD-scan aberrometers.
    Kim DS; Narváez J; Krassin J; Bahjri K
    J Refract Surg; 2009 May; 25(5):429-34. PubMed ID: 19507795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeatability of Wavefront Aberration Measurements With a Placido-Based Topographer in Normal and Keratoconic Eyes.
    Ortiz-Toquero S; Rodriguez G; de Juan V; Martin R
    J Refract Surg; 2016 May; 32(5):338-44. PubMed ID: 27163620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.