These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36102229)

  • 21. Complex aberrant splicing in the induced pluripotent stem cell-derived cardiomyocytes from a patient with long QT syndrome carrying KCNQ1-A344Aspl mutation.
    Wuriyanghai Y; Makiyama T; Sasaki K; Kamakura T; Yamamoto Y; Hayano M; Harita T; Nishiuchi S; Chen J; Kohjitani H; Hirose S; Yokoi F; Gao J; Chonabayashi K; Watanabe K; Ohno S; Yoshida Y; Kimura T; Horie M
    Heart Rhythm; 2018 Oct; 15(10):1566-1574. PubMed ID: 29857160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Analysis of the KCNQ1 gene mutation in 2 families with congenital long QT syndrome type 1 in Xinjiang Uygur Autonomous Region].
    Li YD; Maimaitiabudula M; Zhou XH; Lu YM; Zhang JH; Xing Q; Tang BP
    Zhonghua Xin Xue Guan Bing Za Zhi; 2018 Nov; 46(11):868-873. PubMed ID: 30462975
    [No Abstract]   [Full Text] [Related]  

  • 23. Allelic dropout in long QT syndrome genetic testing: a possible mechanism underlying false-negative results.
    Tester DJ; Cronk LB; Carr JL; Schulz V; Salisbury BA; Judson RS; Ackerman MJ
    Heart Rhythm; 2006 Jul; 3(7):815-21. PubMed ID: 16818214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A founder mutation of the potassium channel KCNQ1 in long QT syndrome: implications for estimation of disease prevalence and molecular diagnostics.
    Piippo K; Swan H; Pasternack M; Chapman H; Paavonen K; Viitasalo M; Toivonen L; Kontula K
    J Am Coll Cardiol; 2001 Feb; 37(2):562-8. PubMed ID: 11216980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinical and functional characterisation of a recurrent KCNQ1 variant in the Belgian population.
    Sieliwonczyk E; Alaerts M; Simons E; Snyders D; Nijak A; Vandendriessche B; Schepers D; Akdeniz D; Van Craenenbroeck E; Knaepen K; Rabaut L; Heidbuchel H; Van Laer L; Saenen J; Labro AJ; Loeys B
    Orphanet J Rare Dis; 2023 Jan; 18(1):23. PubMed ID: 36721196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscopic mechanisms for long QT syndrome type 1 revealed by single-channel analysis of I(Ks) with S3 domain mutations in KCNQ1.
    Eldstrom J; Wang Z; Werry D; Wong N; Fedida D
    Heart Rhythm; 2015 Feb; 12(2):386-94. PubMed ID: 25444851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Mechanism of Autosomal Recessive Long QT-Syndrome 1 without Deafness.
    Oertli A; Rinné S; Moss R; Kääb S; Seemann G; Beckmann BM; Decher N
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498651
    [No Abstract]   [Full Text] [Related]  

  • 28. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome.
    Earle N; Yeo Han D; Pilbrow A; Crawford J; Smith W; Shelling AN; Cameron V; Love DR; Skinner JR
    Heart Rhythm; 2014 Jan; 11(1):76-82. PubMed ID: 24096169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dominant-negative I(Ks) suppression by KCNQ1-deltaF339 potassium channels linked to Romano-Ward syndrome.
    Thomas D; Wimmer AB; Karle CA; Licka M; Alter M; Khalil M; Ulmer HE; Kathöfer S; Kiehn J; Katus HA; Schoels W; Koenen M; Zehelein J
    Cardiovasc Res; 2005 Aug; 67(3):487-97. PubMed ID: 15950200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation location and IKs regulation in the arrhythmic risk of long QT syndrome type 1: the importance of the KCNQ1 S6 region.
    Schwartz PJ; Moreno C; Kotta MC; Pedrazzini M; Crotti L; Dagradi F; Castelletti S; Haugaa KH; Denjoy I; Shkolnikova MA; Brink PA; Heradien MJ; Seyen SRM; Spätjens RLHMG; Spazzolini C; Volders PGA
    Eur Heart J; 2021 Dec; 42(46):4743-4755. PubMed ID: 34505893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using the genome aggregation database, computational pathogenicity prediction tools, and patch clamp heterologous expression studies to demote previously published long QT syndrome type 1 mutations from pathogenic to benign.
    Clemens DJ; Lentino AR; Kapplinger JD; Ye D; Zhou W; Tester DJ; Ackerman MJ
    Heart Rhythm; 2018 Apr; 15(4):555-561. PubMed ID: 29197658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel KCNQ1 splicing mutation in patients with forme fruste LQT1 aggravated by hypokalemia.
    Imai M; Nakajima T; Kaneko Y; Niwamae N; Irie T; Ota M; Iijima T; Tange S; Kurabayashi M
    J Cardiol; 2014 Aug; 64(2):121-6. PubMed ID: 24373870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biophysical characterization of KCNQ1 P320 mutations linked to long QT syndrome 1.
    Thomas D; Khalil M; Alter M; Schweizer PA; Karle CA; Wimmer AB; Licka M; Katus HA; Koenen M; Ulmer HE; Zehelein J
    J Mol Cell Cardiol; 2010 Jan; 48(1):230-7. PubMed ID: 19540844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes.
    Ma D; Wei H; Lu J; Huang D; Liu Z; Loh LJ; Islam O; Liew R; Shim W; Cook SA
    Stem Cell Res Ther; 2015 Mar; 6(1):39. PubMed ID: 25889101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LQT1-associated mutations increase KCNQ1 proteasomal degradation independently of Derlin-1.
    Peroz D; Dahimène S; Baró I; Loussouarn G; Mérot J
    J Biol Chem; 2009 Feb; 284(8):5250-6. PubMed ID: 19114714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1.
    Heijman J; Spätjens RL; Seyen SR; Lentink V; Kuijpers HJ; Boulet IR; de Windt LJ; David M; Volders PG
    Circ Res; 2012 Jan; 110(2):211-9. PubMed ID: 22095730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 3'UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility.
    Cipolla GA; Park JK; de Oliveira LA; Lobo-Alves SC; de Almeida RC; Farias TD; Lemos Dde S; Malheiros D; Lavker RM; Petzl-Erler ML
    Biochim Biophys Acta; 2016 Oct; 1859(10):1306-13. PubMed ID: 27424220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene.
    Moss AJ; Shimizu W; Wilde AA; Towbin JA; Zareba W; Robinson JL; Qi M; Vincent GM; Ackerman MJ; Kaufman ES; Hofman N; Seth R; Kamakura S; Miyamoto Y; Goldenberg I; Andrews ML; McNitt S
    Circulation; 2007 May; 115(19):2481-9. PubMed ID: 17470695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical and molecular genetic risk determinants in adult long QT syndrome type 1 and 2 patients : Koponen et al. Follow-up of adult LQTS patients.
    Koponen M; Havulinna AS; Marjamaa A; Tuiskula AM; Salomaa V; Laitinen-Forsblom PJ; Piippo K; Toivonen L; Kontula K; Viitasalo M; Swan H
    BMC Med Genet; 2018 Apr; 19(1):56. PubMed ID: 29622001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular diagnostics of families with long-QT syndrome.
    Moric-Janiszewska E; Głowacka M
    Cardiol J; 2012; 19(2):159-67. PubMed ID: 22461049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.