These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36102317)

  • 1. Machine-Learning-Based Predictions of Polymer and Postconsumer Recycled Polymer Properties: A Comprehensive Review.
    Andraju N; Curtzwiler GW; Ji Y; Kozliak E; Ranganathan P
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):42771-42790. PubMed ID: 36102317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives on development of biomedical polymer materials in artificial intelligence age.
    Xie S
    J Biomater Appl; 2023 Mar; 37(8):1355-1375. PubMed ID: 36629787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature.
    Tao L; Varshney V; Li Y
    J Chem Inf Model; 2021 Nov; 61(11):5395-5413. PubMed ID: 34662106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges.
    Chen G; Shen Z; Iyer A; Ghumman UF; Tang S; Bi J; Chen W; Li Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing goes greener: Study of the properties of post-consumer recycled polymers for the manufacturing of engineering components.
    Pinho AC; Amaro AM; Piedade AP
    Waste Manag; 2020 Dec; 118():426-434. PubMed ID: 32966947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics.
    Mannodi-Kanakkithodi A; Pilania G; Huan TD; Lookman T; Ramprasad R
    Sci Rep; 2016 Feb; 6():20952. PubMed ID: 26876223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions.
    Antoniuk ER; Li P; Kailkhura B; Hiszpanski AM
    J Chem Inf Model; 2022 Nov; 62(22):5435-5445. PubMed ID: 36315033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence and machine learning in design of mechanical materials.
    Guo K; Yang Z; Yu CH; Buehler MJ
    Mater Horiz; 2021 Apr; 8(4):1153-1172. PubMed ID: 34821909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontiers in nonviral delivery of small molecule and genetic drugs, driven by polymer chemistry and machine learning for materials informatics.
    Ting JM; Tamayo-Mendoza T; Petersen SR; Van Reet J; Ahmed UA; Snell NJ; Fisher JD; Stern M; Oviedo F
    Chem Commun (Camb); 2023 Nov; 59(96):14197-14209. PubMed ID: 37955165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer informatics with multi-task learning.
    Kuenneth C; Rajan AC; Tran H; Chen L; Kim C; Ramprasad R
    Patterns (N Y); 2021 Apr; 2(4):100238. PubMed ID: 33982028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design.
    Nguyen D; Tao L; Li Y
    Front Chem; 2021; 9():820417. PubMed ID: 35141207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field.
    Villalobos-Alva J; Ochoa-Toledo L; Villalobos-Alva MJ; Aliseda A; Pérez-Escamirosa F; Altamirano-Bustamante NF; Ochoa-Fernández F; Zamora-Solís R; Villalobos-Alva S; Revilla-Monsalve C; Kemper-Valverde N; Altamirano-Bustamante MM
    Front Bioeng Biotechnol; 2022; 10():788300. PubMed ID: 35875501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics.
    Kuenneth C; Ramprasad R
    Nat Commun; 2023 Jul; 14(1):4099. PubMed ID: 37433807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PI1M: A Benchmark Database for Polymer Informatics.
    Ma R; Luo T
    J Chem Inf Model; 2020 Oct; 60(10):4684-4690. PubMed ID: 32986418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers.
    Pilania G; Iverson CN; Lookman T; Marrone BL
    J Chem Inf Model; 2019 Dec; 59(12):5013-5025. PubMed ID: 31697891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review.
    Nizamuddin S; Boom YJ; Giustozzi F
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-Driven Design of Polymer-Based Biomaterials: High-throughput Simulation, Experimentation, and Machine Learning.
    Patel RA; Webb MA
    ACS Appl Bio Mater; 2024 Feb; 7(2):510-527. PubMed ID: 36701125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Trends in Machine Learning: A Polymer Perspective.
    Martin TB; Audus DJ
    ACS Polym Au; 2023 Jun; 3(3):239-258. PubMed ID: 37334191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Serum Adsorption onto Polymer Brush Films by Machine Learning.
    Palai D; Tahara H; Chikami S; Latag GV; Maeda S; Komura C; Kurioka H; Hayashi T
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3765-3772. PubMed ID: 35905395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning for Property Prediction and Optimization of Polymeric Nanocomposites: A State-of-the-Art.
    Champa-Bujaico E; García-Díaz P; Díez-Pascual AM
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.