These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36102317)
21. Data-driven algorithms for inverse design of polymers. Sattari K; Xie Y; Lin J Soft Matter; 2021 Sep; 17(33):7607-7622. PubMed ID: 34397078 [TBL] [Abstract][Full Text] [Related]
22. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223 [TBL] [Abstract][Full Text] [Related]
23. A graph representation of molecular ensembles for polymer property prediction. Aldeghi M; Coley CW Chem Sci; 2022 Sep; 13(35):10486-10498. PubMed ID: 36277616 [TBL] [Abstract][Full Text] [Related]
24. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
25. Accelerating Discovery of High Fractional Free Volume Polymers from a Data-Driven Approach. Wang M; Jiang J ACS Appl Mater Interfaces; 2022 Jul; 14(27):31203-31215. PubMed ID: 35767720 [TBL] [Abstract][Full Text] [Related]
26. Machine Learning for Melting Temperature Predictions and Design in Polyhydroxyalkanoate-Based Biopolymers. Bejagam KK; Lalonde J; Iverson CN; Marrone BL; Pilania G J Phys Chem B; 2022 Feb; 126(4):934-945. PubMed ID: 35072485 [TBL] [Abstract][Full Text] [Related]
27. Machine Learning-Driven Biomaterials Evolution. Suwardi A; Wang F; Xue K; Han MY; Teo P; Wang P; Wang S; Liu Y; Ye E; Li Z; Loh XJ Adv Mater; 2022 Jan; 34(1):e2102703. PubMed ID: 34617632 [TBL] [Abstract][Full Text] [Related]
28. Dielectric Polymer Property Prediction Using Recurrent Neural Networks with Optimizations. Nazarova AL; Yang L; Liu K; Mishra A; Kalia RK; Nomura KI; Nakano A; Vashishta P; Rajak P J Chem Inf Model; 2021 May; 61(5):2175-2186. PubMed ID: 33871989 [TBL] [Abstract][Full Text] [Related]
29. Biaxial Elongation Behavior in Partially Molted State of Two-Layer Sheets Containing Postconsumer Material. Wittmann LM; Kaschta J; Drummer D Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956692 [TBL] [Abstract][Full Text] [Related]
30. Machine learning models to accelerate the design of polymeric long-acting injectables. Bannigan P; Bao Z; Hickman RJ; Aldeghi M; Häse F; Aspuru-Guzik A; Allen C Nat Commun; 2023 Jan; 14(1):35. PubMed ID: 36627280 [TBL] [Abstract][Full Text] [Related]
31. Evaluating Polymer Representations via Quantifying Structure-Property Relationships. Ma R; Liu Z; Zhang Q; Liu Z; Luo T J Chem Inf Model; 2019 Jul; 59(7):3110-3119. PubMed ID: 31268306 [TBL] [Abstract][Full Text] [Related]
32. Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break. Cravero F; Díaz MF; Ponzoni I J Chem Phys; 2022 May; 156(20):204903. PubMed ID: 35649865 [TBL] [Abstract][Full Text] [Related]
35. PolyNC: a natural and chemical language model for the prediction of unified polymer properties. Qiu H; Liu L; Qiu X; Dai X; Ji X; Sun ZY Chem Sci; 2024 Jan; 15(2):534-544. PubMed ID: 38179518 [TBL] [Abstract][Full Text] [Related]
36. A Design-to-Device Pipeline for Data-Driven Materials Discovery. Cole JM Acc Chem Res; 2020 Mar; 53(3):599-610. PubMed ID: 32096410 [TBL] [Abstract][Full Text] [Related]
37. Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go? Gianti E; Percec S Biomacromolecules; 2022 Mar; 23(3):576-591. PubMed ID: 35133143 [TBL] [Abstract][Full Text] [Related]