These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36102317)

  • 21. Data-driven algorithms for inverse design of polymers.
    Sattari K; Xie Y; Lin J
    Soft Matter; 2021 Sep; 17(33):7607-7622. PubMed ID: 34397078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A graph representation of molecular ensembles for polymer property prediction.
    Aldeghi M; Coley CW
    Chem Sci; 2022 Sep; 13(35):10486-10498. PubMed ID: 36277616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerating Discovery of High Fractional Free Volume Polymers from a Data-Driven Approach.
    Wang M; Jiang J
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31203-31215. PubMed ID: 35767720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine Learning for Melting Temperature Predictions and Design in Polyhydroxyalkanoate-Based Biopolymers.
    Bejagam KK; Lalonde J; Iverson CN; Marrone BL; Pilania G
    J Phys Chem B; 2022 Feb; 126(4):934-945. PubMed ID: 35072485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning-Driven Biomaterials Evolution.
    Suwardi A; Wang F; Xue K; Han MY; Teo P; Wang P; Wang S; Liu Y; Ye E; Li Z; Loh XJ
    Adv Mater; 2022 Jan; 34(1):e2102703. PubMed ID: 34617632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectric Polymer Property Prediction Using Recurrent Neural Networks with Optimizations.
    Nazarova AL; Yang L; Liu K; Mishra A; Kalia RK; Nomura KI; Nakano A; Vashishta P; Rajak P
    J Chem Inf Model; 2021 May; 61(5):2175-2186. PubMed ID: 33871989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biaxial Elongation Behavior in Partially Molted State of Two-Layer Sheets Containing Postconsumer Material.
    Wittmann LM; Kaschta J; Drummer D
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning models to accelerate the design of polymeric long-acting injectables.
    Bannigan P; Bao Z; Hickman RJ; Aldeghi M; Häse F; Aspuru-Guzik A; Allen C
    Nat Commun; 2023 Jan; 14(1):35. PubMed ID: 36627280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating Polymer Representations via Quantifying Structure-Property Relationships.
    Ma R; Liu Z; Zhang Q; Liu Z; Luo T
    J Chem Inf Model; 2019 Jul; 59(7):3110-3119. PubMed ID: 31268306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break.
    Cravero F; Díaz MF; Ponzoni I
    J Chem Phys; 2022 May; 156(20):204903. PubMed ID: 35649865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data-Driven Methods for Accelerating Polymer Design.
    Patra TK
    ACS Polym Au; 2022 Feb; 2(1):8-26. PubMed ID: 36855746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.
    Patra TK; Meenakshisundaram V; Hung JH; Simmons DS
    ACS Comb Sci; 2017 Feb; 19(2):96-107. PubMed ID: 27997791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PolyNC: a natural and chemical language model for the prediction of unified polymer properties.
    Qiu H; Liu L; Qiu X; Dai X; Ji X; Sun ZY
    Chem Sci; 2024 Jan; 15(2):534-544. PubMed ID: 38179518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Design-to-Device Pipeline for Data-Driven Materials Discovery.
    Cole JM
    Acc Chem Res; 2020 Mar; 53(3):599-610. PubMed ID: 32096410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go?
    Gianti E; Percec S
    Biomacromolecules; 2022 Mar; 23(3):576-591. PubMed ID: 35133143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Big data and machine learning for materials science.
    Rodrigues JF; Florea L; de Oliveira MCF; Diamond D; Oliveira ON
    Discov Mater; 2021; 1(1):12. PubMed ID: 33899049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing High-Refractive Index Polymers Using Materials Informatics.
    Venkatraman V; Alsberg BK
    Polymers (Basel); 2018 Jan; 10(1):. PubMed ID: 30966141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.