BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 36102324)

  • 1. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration.
    Hui Y; Yan Z; Yang H; Xu X; Yuan WE; Qian Y
    ACS Appl Bio Mater; 2022 Oct; 5(10):4741-4759. PubMed ID: 36102324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Update on Graphene-Based Nanomaterials for Neural Growth and Central Nervous System Regeneration.
    Tupone MG; Panella G; d'Angelo M; Castelli V; Caioni G; Catanesi M; Benedetti E; Cimini A
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Neural Stem Cell Proliferation and Differentiation by Graphene-Based Biomaterials.
    Xia L; Zhu W; Wang Y; He S; Chai R
    Neural Plast; 2019; 2019():3608386. PubMed ID: 31737061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration.
    Yao X; Yan Z; Wang X; Jiang H; Qian Y; Fan C
    Regen Biomater; 2021 Aug; 8(4):rbab032. PubMed ID: 34188955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress and mechanism of graphene oxide-composited materials in application of peripheral nerve repair.
    Wang Y; Yang B; Huang Z; Yang Z; Wang J; Ao Q; Yin G; Li Y
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113672. PubMed ID: 38071946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials.
    Mansouri N; Al-Sarawi S; Losic D; Mazumdar J; Clark J; Gronthos S; O'Hare Doig R
    Biotechnol Bioeng; 2021 Nov; 118(11):4217-4230. PubMed ID: 34264518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroactive nanomaterials in the peripheral nerve regeneration.
    Yao X; Qian Y; Fan C
    J Mater Chem B; 2021 Sep; 9(35):6958-6972. PubMed ID: 34195746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurogenic differentiation of adipose derived stem cells on graphene-based mat.
    Feng ZQ; Yan K; Shi C; Xu X; Wang T; Li R; Dong W; Zheng J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():685-692. PubMed ID: 29853140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects.
    Du Z; Wang C; Zhang R; Wang X; Li X
    Int J Nanomedicine; 2020; 15():7523-7551. PubMed ID: 33116486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When stem cells meet graphene: Opportunities and challenges in regenerative medicine.
    Kenry ; Lee WC; Loh KP; Lim CT
    Biomaterials; 2018 Feb; 155():236-250. PubMed ID: 29195230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Black Phosphorus Nanomaterials for Bone Regeneration.
    Qing Y; Li R; Li S; Li Y; Wang X; Qin Y
    Int J Nanomedicine; 2020; 15():2045-2058. PubMed ID: 32273701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene and its derivatives: Opportunities and challenges in dentistry.
    Tahriri M; Del Monico M; Moghanian A; Tavakkoli Yaraki M; Torres R; Yadegari A; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():171-185. PubMed ID: 31146988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene based scaffolds on bone tissue engineering.
    Shadjou N; Hasanzadeh M; Khalilzadeh B
    Bioengineered; 2018 Jan; 9(1):38-47. PubMed ID: 29095664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-Functionalized Biomimetic Scaffolds for Tissue Regeneration.
    Shin YC; Song SJ; Hong SW; Oh JW; Hwang YS; Choi YS; Han DW
    Adv Exp Med Biol; 2018; 1064():73-89. PubMed ID: 30471027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based nanomaterials for peripheral nerve regeneration.
    Convertino D; Trincavelli ML; Giacomelli C; Marchetti L; Coletti C
    Front Bioeng Biotechnol; 2023; 11():1306184. PubMed ID: 38164403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene for the development of the next-generation of biocomposites for dental and medical applications.
    Xie H; Cao T; Rodríguez-Lozano FJ; Luong-Van EK; Rosa V
    Dent Mater; 2017 Jul; 33(7):765-774. PubMed ID: 28495017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation.
    Daneshmandi L; Barajaa M; Tahmasbi Rad A; Sydlik SA; Laurencin CT
    Adv Healthc Mater; 2021 Jan; 10(1):e2001414. PubMed ID: 33103370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.