These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 36102783)
1. Automatic detection and classification of treatment deviations in proton therapy from realistically simulated prompt gamma imaging data. Pietsch J; Khamfongkhruea C; Berthold J; Janssens G; Stützer K; Löck S; Richter C Med Phys; 2023 Jan; 50(1):506-517. PubMed ID: 36102783 [TBL] [Abstract][Full Text] [Related]
2. Classification of the source of treatment deviation in proton therapy using prompt-gamma imaging information. Khamfongkhruea C; Berthold J; Janssens G; Petzoldt J; Smeets J; Pausch G; Richter C Med Phys; 2020 Oct; 47(10):5102-5111. PubMed ID: 32678913 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton treatment verification. Nenoff L; Priegnitz M; Janssens G; Petzoldt J; Wohlfahrt P; Trezza A; Smeets J; Pausch G; Richter C Radiother Oncol; 2017 Dec; 125(3):534-540. PubMed ID: 29113697 [TBL] [Abstract][Full Text] [Related]
4. Detectability of Anatomical Changes With Prompt-Gamma Imaging: First Systematic Evaluation of Clinical Application During Prostate-Cancer Proton Therapy. Berthold J; Pietsch J; Piplack N; Khamfongkhruea C; Thiele J; Hölscher T; Janssens G; Smeets J; Traneus E; Löck S; Stützer K; Richter C Int J Radiat Oncol Biol Phys; 2023 Nov; 117(3):718-729. PubMed ID: 37160193 [TBL] [Abstract][Full Text] [Related]
5. Range shift verification in spot scanning proton therapy using gamma electron vertex imaging. Kim SH; Jeong JH; Ku Y; Lee SB; Shin D; Lim YK; Kim H; Kim CH Med Phys; 2024 Mar; 51(3):1985-1996. PubMed ID: 37722712 [TBL] [Abstract][Full Text] [Related]
6. First-In-Human Validation of CT-Based Proton Range Prediction Using Prompt Gamma Imaging in Prostate Cancer Treatments. Berthold J; Khamfongkhruea C; Petzoldt J; Thiele J; Hölscher T; Wohlfahrt P; Peters N; Jost A; Hofmann C; Janssens G; Smeets J; Richter C Int J Radiat Oncol Biol Phys; 2021 Nov; 111(4):1033-1043. PubMed ID: 34229052 [TBL] [Abstract][Full Text] [Related]
7. Accounting for prompt gamma emission and detection for range verification in proton therapy treatment planning. Tian L; Huang Z; Janssens G; Landry G; Dedes G; Kamp F; Belka C; Pinto M; Parodi K Phys Med Biol; 2021 Feb; 66(5):055005. PubMed ID: 33171445 [TBL] [Abstract][Full Text] [Related]
8. A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes. Tian L; Landry G; Dedes G; Pinto M; Kamp F; Belka C; Parodi K Phys Med Biol; 2020 Apr; 65(9):095005. PubMed ID: 32135530 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity study of prompt gamma imaging of scanned beam proton therapy in heterogeneous anatomies. Janssens G; Smeets J; Vander Stappen F; Prieels D; Clementel E; Hotoiu EL; Sterpin E Radiother Oncol; 2016 Mar; 118(3):562-7. PubMed ID: 26627703 [TBL] [Abstract][Full Text] [Related]
10. Requirements for a Compton camera for in vivo range verification of proton therapy. Rohling H; Priegnitz M; Schoene S; Schumann A; Enghardt W; Hueso-González F; Pausch G; Fiedler F Phys Med Biol; 2017 Apr; 62(7):2795-2811. PubMed ID: 28195562 [TBL] [Abstract][Full Text] [Related]
11. Toward a new treatment planning approach accounting for in vivo proton range verification. Tian L; Landry G; Dedes G; Kamp F; Pinto M; Niepel K; Belka C; Parodi K Phys Med Biol; 2018 Oct; 63(21):215025. PubMed ID: 30375361 [TBL] [Abstract][Full Text] [Related]
12. Classification of various sources of error in range assessment using proton radiography and neural networks in head and neck cancer patients. Oria CS; Marmitt GG; Both S; Langendijk JA; Knopf AC; Meijers A Phys Med Biol; 2020 Nov; 65(23):. PubMed ID: 33049722 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo study on the sensitivity of prompt gamma imaging to proton range variations due to interfractional changes in prostate cancer patients. Schmid S; Landry G; Thieke C; Verhaegen F; Ganswindt U; Belka C; Parodi K; Dedes G Phys Med Biol; 2015 Dec; 60(24):9329-47. PubMed ID: 26581022 [TBL] [Abstract][Full Text] [Related]
14. A 3D transfer learning approach for identifying multiple simultaneous errors during radiotherapy. van den Berg K; Wolfs CJA; Verhaegen F Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38091615 [No Abstract] [Full Text] [Related]
15. Prompt Gamma Imaging for In Vivo Range Verification of Pencil Beam Scanning Proton Therapy. Xie Y; Bentefour EH; Janssens G; Smeets J; Vander Stappen F; Hotoiu L; Yin L; Dolney D; Avery S; O'Grady F; Prieels D; McDonough J; Solberg TD; Lustig RA; Lin A; Teo BK Int J Radiat Oncol Biol Phys; 2017 Sep; 99(1):210-218. PubMed ID: 28816148 [TBL] [Abstract][Full Text] [Related]
16. A feasibility study of enhanced prompt gamma imaging for range verification in proton therapy using deep learning. Jiang Z; Polf JC; Barajas CA; Gobbert MK; Ren L Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36848674 [No Abstract] [Full Text] [Related]
17. Shortening delivery times for intensity-modulated proton therapy by reducing the number of proton spots: an experimental verification. van de Water S; Belosi MF; Albertini F; Winterhalter C; Weber DC; Lomax AJ Phys Med Biol; 2020 May; 65(9):095008. PubMed ID: 32155594 [TBL] [Abstract][Full Text] [Related]
18. A machine learning-based framework for delivery error prediction in proton pencil beam scanning using irradiation log-files. Maes D; Bowen SR; Regmi R; Bloch C; Wong T; Rosenfeld A; Saini J Phys Med; 2020 Oct; 78():179-186. PubMed ID: 33038643 [TBL] [Abstract][Full Text] [Related]
19. Patient selection for proton therapy using Normal Tissue Complication Probability with deep learning dose prediction for oropharyngeal cancer. Huet-Dastarac M; Michiels S; Rivas ST; Ozan H; Sterpin E; Lee JA; Barragan-Montero A Med Phys; 2023 Oct; 50(10):6201-6214. PubMed ID: 37140481 [TBL] [Abstract][Full Text] [Related]
20. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]