These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36102784)

  • 1. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints.
    Fassio AV; Shub L; Ponzoni L; McKinley J; O'Meara MJ; Ferreira RS; Keiser MJ; de Melo Minardi RC
    J Chem Inf Model; 2022 Sep; 62(18):4300-4318. PubMed ID: 36102784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProLIF: a library to encode molecular interactions as fingerprints.
    Bouysset C; Fiorucci S
    J Cheminform; 2021 Sep; 13(1):72. PubMed ID: 34563256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a protein-ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions.
    Wójcikowski M; Kukiełka M; Stepniewska-Dziubinska MM; Siedlecki P
    Bioinformatics; 2019 Apr; 35(8):1334-1341. PubMed ID: 30202917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.
    Yasuo N; Sekijima M
    J Chem Inf Model; 2019 Mar; 59(3):1050-1061. PubMed ID: 30808172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TF3P: Three-Dimensional Force Fields Fingerprint Learned by Deep Capsular Network.
    Wang Y; Hu J; Lai J; Li Y; Jin H; Zhang L; Zhang LR; Liu ZM
    J Chem Inf Model; 2020 Jun; 60(6):2754-2765. PubMed ID: 32392062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints.
    Yin Z; Song W; Li B; Wang F; Xie L; Xu X
    Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GeoDILI: A Robust and Interpretable Model for Drug-Induced Liver Injury Prediction Using Graph Neural Network-Based Molecular Geometric Representation.
    Wu W; Qian J; Liang C; Yang J; Ge G; Zhou Q; Guan X
    Chem Res Toxicol; 2023 Nov; 36(11):1717-1730. PubMed ID: 37839069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtered circular fingerprints improve either prediction or runtime performance while retaining interpretability.
    Gütlein M; Kramer S
    J Cheminform; 2016; 8():60. PubMed ID: 27853484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Average Information Content Maximization--A New Approach for Fingerprint Hybridization and Reduction.
    Śmieja M; Warszycki D
    PLoS One; 2016; 11(1):e0146666. PubMed ID: 26784447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies.
    Cao DS; Liang YZ; Yan J; Tan GS; Xu QS; Liu S
    J Chem Inf Model; 2013 Nov; 53(11):3086-96. PubMed ID: 24047419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural interaction fingerprints and machine learning for predicting and explaining binding of small molecule ligands to RNA.
    Szulc NA; Mackiewicz Z; Bujnicki JM; Stefaniak F
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37204195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fingeRNAt-A novel tool for high-throughput analysis of nucleic acid-ligand interactions.
    Szulc NA; Mackiewicz Z; Bujnicki JM; Stefaniak F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009783. PubMed ID: 35653385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical application of the Average Information Content Maximization (AIC-MAX) algorithm: selection of the most important structural features for serotonin receptor ligands.
    Warszycki D; Śmieja M; Kafel R
    Mol Divers; 2017 May; 21(2):407-412. PubMed ID: 28185036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Few-Shot Learning for Low-Data Drug Discovery.
    Vella D; Ebejer JP
    J Chem Inf Model; 2023 Jan; 63(1):27-42. PubMed ID: 36410391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.
    Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ
    Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.