These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36102869)

  • 1. Guest water hinders sodium-ion diffusion in low-defect Berlin green cathode material.
    Ojwang DO; Häggström L; Ericsson T; Mogensen R; Brant WR
    Dalton Trans; 2022 Oct; 51(38):14712-14720. PubMed ID: 36102869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na
    Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL
    Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries.
    Nguyen TP; Kim IT
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Berlin Green with tunable iron content as ultra-high rate host for efficient aqueous ammonium ion storage.
    Guo YF; Qu JP; Liu XY; Wang PF; Liu ZL; Zhang JH; Yi TF
    J Colloid Interface Sci; 2024 Aug; 667():607-616. PubMed ID: 38657544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries.
    Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G
    Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping.
    Chen ZY; Fu XY; Zhang LL; Yan B; Yang XL
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5506-5513. PubMed ID: 35072463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Reversible Capacity and Cycling Stability by Linear (N=O) Anions in Fe[Fe(CN)
    Han Q; Hu Y; Gao S; Yang Z; Liu X; Wang C; Han J
    ChemSusChem; 2023 Oct; 16(20):e202300823. PubMed ID: 37552229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes.
    Chen R; Huang Y; Xie M; Zhang Q; Zhang X; Li L; Wu F
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16078-86. PubMed ID: 27267656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries.
    Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of sodium content on the thermal behavior of low vacancy Prussian white cathode material.
    Ojwang DO; Häggström L; Ericsson T; Ångström J; Brant WR
    Dalton Trans; 2020 Mar; 49(11):3570-3579. PubMed ID: 32124896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries.
    Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method.
    Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries.
    Rehman R; Peng J; Yi H; Shen Y; Yin J; Li C; Fang C; Li Q; Han J
    RSC Adv; 2020 Jul; 10(45):27033-27041. PubMed ID: 35515809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries.
    Ojwang DO; Svensson M; Njel C; Mogensen R; Menon AS; Ericsson T; Häggström L; Maibach J; Brant WR
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10054-10063. PubMed ID: 33599484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Synthesis of Mn
    Lobinsky AA; Kaneva MV; Tenevich MI; Popkov VI
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg.
    Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y
    Angew Chem Int Ed Engl; 2024 Feb; ():e202400214. PubMed ID: 38299760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Y-tube assisted coprecipitation synthesis of iron-based Prussian blue analogues cathode materials for sodium-ion batteries.
    Zhang R; Liu Y; Liu H; Zhong Y; Zhang Y; Wu Z; Wang X
    RSC Adv; 2024 Apr; 14(17):12096-12106. PubMed ID: 38628486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.
    Kim DM; Kim Y; Arumugam D; Woo SW; Jo YN; Park MS; Kim YJ; Choi NS; Lee KT
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8554-60. PubMed ID: 26967192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface and electronic structure engineering induced Prussian blue analogues with ultra-stable capability for aqueous NH
    Hou W; Yan C; Shao P; Dai K; Yang J
    Nanoscale; 2022 Jun; 14(23):8501-8509. PubMed ID: 35665797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries.
    Zhou Q; Liu HK; Dou SX; Chong S
    ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.