These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36102870)

  • 21. Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity.
    Yu I; Acosta-Ramírez A; Mehrkhodavandi P
    J Am Chem Soc; 2012 Aug; 134(30):12758-73. PubMed ID: 22765928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.
    Schäfer PM; Fuchs M; Ohligschläger A; Rittinghaus R; McKeown P; Akin E; Schmidt M; Hoffmann A; Liauw MA; Jones MD; Herres-Pawlis S
    ChemSusChem; 2017 Sep; 10(18):3547-3556. PubMed ID: 28779508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chiral 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-Catalyzed Stereoselective Ring-Opening Polymerization of
    Mahmood Q; Xu G; Zhou L; Guo X; Wang Q
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate.
    Fliedel C; Rosa V; Alves FM; Martins AM; Avilés T; Dagorne S
    Dalton Trans; 2015 Jul; 44(27):12376-87. PubMed ID: 25847079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of N,N,O-chelate zinc and aluminum complexes and their catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide.
    Kong WL; Chai ZY; Wang ZX
    Dalton Trans; 2014 Oct; 43(38):14470-80. PubMed ID: 25027033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Syntheses of biodegradable and biorenewable polylactides initiated by aluminum complexes bearing porphyrin derivatives by the ring-opening polymerization of lactides.
    Li D; Gao B; Duan Q
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):846-860. PubMed ID: 30961446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterization of dinuclear rare-earth complexes supported by amine-bridged bis(phenolate) ligands and their catalytic activity for the ring-opening polymerization of l-lactide.
    Duan YL; He JX; Wang W; Zhou JJ; Huang Y; Yang Y
    Dalton Trans; 2016 Jun; 45(26):10807-20. PubMed ID: 27294827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zinc complexes containing asymmetrical N,N,O-tridentate ligands and their application in lactide polymerization.
    Gao B; Duan R; Pang X; Li X; Qu Z; Shao H; Wang X; Chen X
    Dalton Trans; 2013 Dec; 42(46):16334-42. PubMed ID: 24065120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different mechanisms at different temperatures for the ring-opening polymerization of lactide catalyzed by binuclear magnesium and zinc alkoxides.
    Sun Y; Cui Y; Xiong J; Dai Z; Tang N; Wu J
    Dalton Trans; 2015 Oct; 44(37):16383-91. PubMed ID: 26308730
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Liu N; Liu B; Yao C; Cui D
    Polymers (Basel); 2016 Jan; 8(1):. PubMed ID: 30979112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diastereoselective synthesis of chiral aminophenolate magnesium complexes and their application in the stereoselective polymerization of rac-lactide and rac-β-butyrolactone.
    Wang H; Guo J; Yang Y; Ma H
    Dalton Trans; 2016 Jul; 45(27):10942-53. PubMed ID: 27302474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes.
    Darensbourg DJ; Karroonnirun O; Wilson SJ
    Inorg Chem; 2011 Jul; 50(14):6775-87. PubMed ID: 21675736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stereocontrolled polymerization of racemic lactide with chiral initiator: combining stereoelection and chiral ligand-exchange mechanism.
    Majerska K; Duda A
    J Am Chem Soc; 2004 Feb; 126(4):1026-7. PubMed ID: 14746463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Diethylzinc/Gallic Acid and Diethylzinc/Gallic Acid Ester Catalytic Systems for the Ring-Opening Polymerization of rac-Lactide.
    Żółtowska K; Piotrowska U; Oledzka E; Sobczak M
    Molecules; 2015 Dec; 20(12):21909-23. PubMed ID: 26670224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bulk Organocatalytic Synthetic Access to Statistical Copolyesters from l-Lactide and ε-Caprolactone Using Benzoic Acid.
    Mezzasalma L; Harrisson S; Saba S; Loyer P; Coulembier O; Taton D
    Biomacromolecules; 2019 May; 20(5):1965-1974. PubMed ID: 30964279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Steric Effects of Zinc Complexes Bearing Achiral Benzoxazolyl Aminophenolate Ligands in Isoselective Polymerization of rac-Lactide.
    Hu J; Kan C; Ma H
    Inorg Chem; 2018 Sep; 57(17):11240-11251. PubMed ID: 30133267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures.
    Thomas CM
    Chem Soc Rev; 2010 Jan; 39(1):165-73. PubMed ID: 20023847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc complexes supported by methyl salicylato ligands: synthesis, structure, and application in ring-opening polymerization of L-lactide.
    Petrus R; Sobota P
    Dalton Trans; 2013 Oct; 42(38):13838-44. PubMed ID: 23811782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lewis Pair Catalysts in the Polymerization of Lactide and Related Cyclic Esters.
    Li X; Chen C; Wu J
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29342082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lithium Complexes Derived of Benzylphosphines: Synthesis, Characterization and Evaluation in the ROP of rac-Lactide and ε-Caprolactone.
    Rufino-Felipe E; Muñoz-Hernández MÁ; Montiel-Palma V
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29301213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.