These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36102896)

  • 1. Catalyst-free photo-reductions of aromatic olefins and carbonyl compounds.
    Wu J; Yan B; Meng J; Yang E; Ye X; Yao Q
    Org Biomol Chem; 2022 Nov; 20(44):8638-8642. PubMed ID: 36102896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecularly defined iron-catalyst for the selective hydrogenation of α,β-unsaturated aldehydes.
    Wienhöfer G; Westerhaus FA; Junge K; Ludwig R; Beller M
    Chemistry; 2013 Jun; 19(24):7701-7. PubMed ID: 23649662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A recyclable nanoparticle-supported rhodium catalyst for hydrogenation reactions.
    Dell'Anna MM; Gallo V; Mastrorilli P; Romanazzi G
    Molecules; 2010 May; 15(5):3311-8. PubMed ID: 20657481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrasubstituted olefins through the stereoselective catalytic intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds.
    Kwon KH; Lee DW; Yi CS
    Angew Chem Int Ed Engl; 2011 Feb; 50(7):1692-5. PubMed ID: 21308934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition.
    Liu RY; Buchwald SL
    Acc Chem Res; 2020 Jun; 53(6):1229-1243. PubMed ID: 32401530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective reductive coupling of 1,3-enynes to heterocyclic aromatic aldehydes and ketones via rhodium-catalyzed asymmetric hydrogenation: mechanistic insight into the role of Brønsted acid additives.
    Komanduri V; Krische MJ
    J Am Chem Soc; 2006 Dec; 128(51):16448-9. PubMed ID: 17177363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel-catalyzed, carbonyl-ene-type reactions: selective for alpha olefins and more efficient with electron-rich aldehydes.
    Ho CY; Ng SS; Jamison TF
    J Am Chem Soc; 2006 Apr; 128(16):5362-3. PubMed ID: 16620106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly active iridium catalysts for the hydrogenation of ketones and aldehydes.
    Chen X; Jia W; Guo R; Graham TW; Gullons MA; Abdur-Rashid K
    Dalton Trans; 2009 Feb; (8):1407-10. PubMed ID: 19462662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From α-arylation of olefins to acylation with aldehydes: a journey in regiocontrol of the Heck reaction.
    Ruan J; Xiao J
    Acc Chem Res; 2011 Aug; 44(8):614-26. PubMed ID: 21612205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketone-Olefin Coupling of Aliphatic and Aromatic Carbonyls Catalyzed by Excited-State Acridine Radicals.
    Venditto NJ; Liang YS; El Mokadem RK; Nicewicz DA
    J Am Chem Soc; 2022 Jul; 144(26):11888-11896. PubMed ID: 35737516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hafnium(IV) Chloride Catalyzes Highly Efficient Acetalization of Carbonyl Compounds.
    Bonilla-Landa I; López-Hernández E; Barrera-Méndez F; Salas NC; Olivares-Romero JL
    Curr Org Synth; 2019; 16(6):913-920. PubMed ID: 31984912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous palladium-catalyzed asymmetric hydrogenation.
    Chen QA; Ye ZS; Duan Y; Zhou YG
    Chem Soc Rev; 2013 Jan; 42(2):497-511. PubMed ID: 23138972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonmetal catalyzed hydrogenation of carbonyl compounds.
    Scott DJ; Fuchter MJ; Ashley AE
    J Am Chem Soc; 2014 Nov; 136(45):15813-6. PubMed ID: 25333722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct, enantioselective α-alkylation of aldehydes using simple olefins.
    Capacci AG; Malinowski JT; McAlpine NJ; Kuhne J; MacMillan DWC
    Nat Chem; 2017 Nov; 9(11):1073-1077. PubMed ID: 29064486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of α,β-unsaturated aldehydes from olefins.
    Fang X; Jackstell R; Franke R; Beller M
    Chemistry; 2014 Oct; 20(41):13210-6. PubMed ID: 25179918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical hydroboration of carbonyl compounds.
    Chen Z; Lv K; Yuan T; Zhang X; Yao W; Ma M
    Dalton Trans; 2022 Aug; 51(31):11868-11875. PubMed ID: 35876237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scope and mechanism of the intermolecular addition of aromatic aldehydes to olefins catalyzed by Rh(I) olefin complexes.
    Roy AH; Lenges CP; Brookhart M
    J Am Chem Soc; 2007 Feb; 129(7):2082-93. PubMed ID: 17263531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoenzymatic synthesis of a mixed phosphine-phosphine oxide catalyst and its application to asymmetric allylation of aldehydes and hydrogenation of alkenes.
    Boyd DR; Bell M; Dunne KS; Kelly B; Stevenson PJ; Malone JF; Allen CC
    Org Biomol Chem; 2012 Feb; 10(7):1388-95. PubMed ID: 22218455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective olefination of carbonyl compounds via metal-catalyzed carbene transfer from diazo reagents.
    Hu Y; Zhang XP
    Top Curr Chem; 2012; 327():147-62. PubMed ID: 22527406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-selective Hydrogenation/Deuteration of Benzylic Olefins Enabled by Electroreduction Using Water.
    Kolb S; Werz DB
    Chemistry; 2023 Jun; 29(32):e202300849. PubMed ID: 36972395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.