These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Novel acetic acid derivatives containing quinazolin-4(3H)-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Tokalı FS; Demir Y; Türkeş C; Dinçer B; Beydemir Ş Drug Dev Res; 2023 Apr; 84(2):275-295. PubMed ID: 36598092 [TBL] [Abstract][Full Text] [Related]
6. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Sever B; Altıntop MD; Demir Y; Akalın Çiftçi G; Beydemir Ş; Özdemir A Bioorg Chem; 2020 Sep; 102():104110. PubMed ID: 32739480 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors. Tokalı FS; Demir Y; Demircioğlu İH; Türkeş C; Kalay E; Şendil K; Beydemir Ş Drug Dev Res; 2022 May; 83(3):586-604. PubMed ID: 34585414 [TBL] [Abstract][Full Text] [Related]
8. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Celestina SK; Sundaram K; Ravi S Bioorg Chem; 2020 Apr; 97():103640. PubMed ID: 32086051 [TBL] [Abstract][Full Text] [Related]
9. Benzoxazinone-thiosemicarbazones as antidiabetic leads via aldose reductase inhibition: Synthesis, biological screening and molecular docking study. Shehzad MT; Imran A; Njateng GSS; Hameed A; Islam M; Al-Rashida M; Uroos M; Asari A; Shafiq Z; Iqbal J Bioorg Chem; 2019 Jun; 87():857-866. PubMed ID: 30551808 [TBL] [Abstract][Full Text] [Related]
10. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Sever B; Altıntop MD; Demir Y; Yılmaz N; Akalın Çiftçi G; Beydemir Ş; Özdemir A Chem Biol Interact; 2021 Aug; 345():109576. PubMed ID: 34252406 [TBL] [Abstract][Full Text] [Related]
11. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. Demir Y; Işık M; Gülçin İ; Beydemir Ş J Biochem Mol Toxicol; 2017 Sep; 31(9):. PubMed ID: 28557170 [TBL] [Abstract][Full Text] [Related]
12. Kinetics and molecular docking studies of kaempferol and its prenylated derivatives as aldose reductase inhibitors. Jung HA; Moon HE; Oh SH; Kim BW; Sohn HS; Choi JS Chem Biol Interact; 2012 May; 197(2-3):110-8. PubMed ID: 22543015 [TBL] [Abstract][Full Text] [Related]
13. Determination of the inhibition profiles of pyrazolyl-thiazole derivatives against aldose reductase and α-glycosidase and molecular docking studies. Demir Y; Taslimi P; Koçyiğit ÜM; Akkuş M; Özaslan MS; Duran HE; Budak Y; Tüzün B; Gürdere MB; Ceylan M; Taysi S; Gülçin İ; Beydemir Ş Arch Pharm (Weinheim); 2020 Dec; 353(12):e2000118. PubMed ID: 32761859 [TBL] [Abstract][Full Text] [Related]
14. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Jung HA; Islam MN; Lee CM; Oh SH; Lee S; Jung JH; Choi JS Chem Biol Interact; 2013 Oct; 206(1):55-62. PubMed ID: 23994501 [TBL] [Abstract][Full Text] [Related]
15. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Demir Y; Özaslan MS; Duran HE; Küfrevioğlu Öİ; Beydemir Ş Environ Toxicol Pharmacol; 2019 Aug; 70():103195. PubMed ID: 31125830 [TBL] [Abstract][Full Text] [Related]
16. Aldose Reductase and the Polyol Pathway in Schwann Cells: Old and New Problems. Niimi N; Yako H; Takaku S; Chung SK; Sango K Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33494154 [TBL] [Abstract][Full Text] [Related]
17. Updates on Aldose Reductase Inhibitors for Management of Diabetic Complications and Non-diabetic Diseases. Grewal AS; Bhardwaj S; Pandita D; Lather V; Sekhon BS Mini Rev Med Chem; 2016; 16(2):120-62. PubMed ID: 26349493 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Reddy TN; Ravinder M; Bagul P; Ravikanti K; Bagul C; Nanubolu JB; Srinivas K; Banerjee SK; Rao VJ Eur J Med Chem; 2014 Jan; 71():53-66. PubMed ID: 24275248 [TBL] [Abstract][Full Text] [Related]
19. Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: synthesis, biological evaluation, molecular docking and simulation studies. Bacha MM; Nadeem H; Zaib S; Sarwar S; Imran A; Rahman SU; Ali HS; Arif M; Iqbal J BMC Chem; 2021 Apr; 15(1):28. PubMed ID: 33906691 [TBL] [Abstract][Full Text] [Related]
20. Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors. Ji Y; Chen X; Chen H; Zhang X; Fan Z; Xie L; Ma B; Zhu C Bioorg Med Chem; 2019 Apr; 27(8):1658-1669. PubMed ID: 30858026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]