These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36103140)
1. Identifying and Removing the Interfacial States in Metal-Oxide-Semiconductor Schottky Si Photoanodes for the Highest Fill Factor. Ma J; Chi H; Wang A; Wang P; Jing H; Yao T; Li C J Am Chem Soc; 2022 Sep; 144(38):17540-17548. PubMed ID: 36103140 [TBL] [Abstract][Full Text] [Related]
2. Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation. Yao T; Chen R; Li J; Han J; Qin W; Wang H; Shi J; Fan F; Li C J Am Chem Soc; 2016 Oct; 138(41):13664-13672. PubMed ID: 27653158 [TBL] [Abstract][Full Text] [Related]
4. Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes. Kim TL; Choi MJ; Lee TH; Sohn W; Jang HW Nano Lett; 2019 Sep; 19(9):5897-5903. PubMed ID: 31095915 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the Photovoltage of Ni/ n-Si Photoanode for Water Oxidation through a Rapid Thermal Process. Li S; She G; Chen C; Zhang S; Mu L; Guo X; Shi W ACS Appl Mater Interfaces; 2018 Mar; 10(10):8594-8598. PubMed ID: 29481034 [TBL] [Abstract][Full Text] [Related]
6. Interfacial engineering of 1D/2D heterostructured photoanode for efficient photoelectrochemical water splitting. Wang Z; Qin Y; Wu X; He K; Li X; Wang J Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 35977454 [TBL] [Abstract][Full Text] [Related]
7. Silicon Photoanodes Partially Covered by Ni@Ni(OH) Xu G; Xu Z; Shi Z; Pei L; Yan S; Gu Z; Zou Z ChemSusChem; 2017 Jul; 10(14):2897-2903. PubMed ID: 28586139 [TBL] [Abstract][Full Text] [Related]
8. Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance. Satterthwaite PF; Scheuermann AG; Hurley PK; Chidsey CE; McIntyre PC ACS Appl Mater Interfaces; 2016 May; 8(20):13140-9. PubMed ID: 27096845 [TBL] [Abstract][Full Text] [Related]
9. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer. Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384 [TBL] [Abstract][Full Text] [Related]
10. Electroless Plating of NiFeP Alloy on the Surface of Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation. Li F; Li Y; Zhuo Q; Zhou D; Zhao Y; Zhao Z; Wu X; Shan Y; Sun L ACS Appl Mater Interfaces; 2020 Mar; 12(10):11479-11488. PubMed ID: 32056436 [No Abstract] [Full Text] [Related]
11. Plasmon-driven water splitting enhancement on plasmonic metal-insulator-semiconductor hetero-nanostructures: unraveling the crucial role of interfacial engineering. Li C; Wang P; Li H; Wang M; Zhang J; Qi G; Jin Y Nanoscale; 2018 Aug; 10(29):14290-14297. PubMed ID: 30015344 [TBL] [Abstract][Full Text] [Related]
12. Ultrathin Silicon Oxide Film-Induced Enhancement of Charge Separation and Transport of Nanostructured Titanium(IV) Oxide Photoelectrode. Akita A; Kobayashi H; Tada H Chemphyschem; 2019 Aug; 20(16):2054-2059. PubMed ID: 31260153 [TBL] [Abstract][Full Text] [Related]
13. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes. Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824 [TBL] [Abstract][Full Text] [Related]
14. Cascading Interfaces Enable n-Si Photoanodes for Efficient and Stable Solar Water Oxidation. He L; Zhou W; Hong L; Wei D; Wang G; Shi X; Shen S J Phys Chem Lett; 2019 May; 10(9):2278-2285. PubMed ID: 31002523 [TBL] [Abstract][Full Text] [Related]
15. Silicon Photoanode Modified with Work-function-tuned Ni@Fe Liu D; Jiang T; Liu D; Zhang W; Qin H; Yan S; Zou Z ChemSusChem; 2020 Nov; 13(22):6037-6044. PubMed ID: 33022839 [TBL] [Abstract][Full Text] [Related]
16. One-Dimensional CdS/Carbon/Au Plasmonic Nanoarray Photoanodes via In Situ Reduction-Graphitization Approach toward Efficient Solar Hydrogen Evolution. Peng Z; Zhang J; Liu P; Claverie J; Siaj M ACS Appl Mater Interfaces; 2021 Jul; 13(29):34658-34670. PubMed ID: 34254774 [TBL] [Abstract][Full Text] [Related]
17. Maximizing Oxygen Evolution Performance on a Transparent NiFeO Kawase Y; Higashi T; Katayama M; Domen K; Takanabe K ACS Appl Mater Interfaces; 2021 Apr; 13(14):16317-16325. PubMed ID: 33797878 [TBL] [Abstract][Full Text] [Related]
18. Photoelectrochemistry of Ultrathin, Semitransparent, and Catalytic Gold Films Electrodeposited Epitaxially onto n-Silicon (111). Chen Q; Switzer JA ACS Appl Mater Interfaces; 2018 Jun; 10(25):21365-21371. PubMed ID: 29856594 [TBL] [Abstract][Full Text] [Related]
19. Engineering the Inhomogeneity of Metal-Insulator-Semiconductor Junctions for Photoelectrochemical Methanol Oxidation. Li Y; Ding C; Li Y; Zeng J; Kang C; Chen H; Wang L; He J; Li C ACS Appl Mater Interfaces; 2023 Dec; 15(51):59403-59412. PubMed ID: 38104346 [TBL] [Abstract][Full Text] [Related]
20. The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation. McDowell MT; Lichterman MF; Carim AI; Liu R; Hu S; Brunschwig BS; Lewis NS ACS Appl Mater Interfaces; 2015 Jul; 7(28):15189-99. PubMed ID: 26083827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]