These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36103434)
1. Minimax Optimal Bandits for Heavy Tail Rewards. Lee K; Lim S IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5280-5294. PubMed ID: 36103434 [TBL] [Abstract][Full Text] [Related]
2. Global Bandits. Atan O; Tekin C; van der Schaar M IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5798-5811. PubMed ID: 29993936 [TBL] [Abstract][Full Text] [Related]
3. An Optimal Algorithm for the Stochastic Bandits While Knowing the Near-Optimal Mean Reward. Yang S; Gao Y IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):2285-2291. PubMed ID: 32479408 [TBL] [Abstract][Full Text] [Related]
4. A Multiplier Bootstrap Approach to Designing Robust Algorithms for Contextual Bandits. Xie H; Tang Q; Zhu Q IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9887-9899. PubMed ID: 35385392 [TBL] [Abstract][Full Text] [Related]
5. Understanding the stochastic dynamics of sequential decision-making processes: A path-integral analysis of multi-armed bandits. Li B; Yeung CH Chaos; 2023 Jun; 33(6):. PubMed ID: 37276557 [TBL] [Abstract][Full Text] [Related]
6. Thompson Sampling for Stochastic Bandits with Noisy Contexts: An Information-Theoretic Regret Analysis. Jose ST; Moothedath S Entropy (Basel); 2024 Jul; 26(7):. PubMed ID: 39056968 [TBL] [Abstract][Full Text] [Related]
7. Adaptive Huber Regression. Sun Q; Zhou WX; Fan J J Am Stat Assoc; 2020; 115(529):254-265. PubMed ID: 33139964 [TBL] [Abstract][Full Text] [Related]
8. An Online Minimax Optimal Algorithm for Adversarial Multiarmed Bandit Problem. Gokcesu K; Kozat SS IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5565-5580. PubMed ID: 29994080 [TBL] [Abstract][Full Text] [Related]
9. Minimax Estimation of Functionals of Discrete Distributions. Jiao J; Venkat K; Han Y; Weissman T IEEE Trans Inf Theory; 2015 May; 61(5):2835-2885. PubMed ID: 29375152 [TBL] [Abstract][Full Text] [Related]
10. Overtaking method based on sand-sifter mechanism: Why do optimistic value functions find optimal solutions in multi-armed bandit problems? Ochi K; Kamiura M Biosystems; 2015 Sep; 135():55-65. PubMed ID: 26166266 [TBL] [Abstract][Full Text] [Related]
11. Covariance Matrix Adaptation for Multiobjective Multiarmed Bandits. Drugan MM IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2493-2502. PubMed ID: 30602427 [TBL] [Abstract][Full Text] [Related]
12. An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits. Sledge IJ; Príncipe JC Entropy (Basel); 2018 Feb; 20(3):. PubMed ID: 33265246 [TBL] [Abstract][Full Text] [Related]
13. TARGETED SEQUENTIAL DESIGN FOR TARGETED LEARNING INFERENCE OF THE OPTIMAL TREATMENT RULE AND ITS MEAN REWARD. Chambaz A; Zheng W; van der Laan MJ Ann Stat; 2017; 45(6):2537-2564. PubMed ID: 29398733 [TBL] [Abstract][Full Text] [Related]
14. Optimal Randomness for Stochastic Configuration Network (SCN) with Heavy-Tailed Distributions. Niu H; Wei J; Chen Y Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33396383 [TBL] [Abstract][Full Text] [Related]
15. A Thompson Sampling Algorithm With Logarithmic Regret for Unimodal Gaussian Bandit. Yang L; Li Z; Hu Z; Ruan S; Pan G IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5332-5341. PubMed ID: 37527328 [TBL] [Abstract][Full Text] [Related]
16. A SHRINKAGE PRINCIPLE FOR HEAVY-TAILED DATA: HIGH-DIMENSIONAL ROBUST LOW-RANK MATRIX RECOVERY. Fan J; Wang W; Zhu Z Ann Stat; 2021 Jun; 49(3):1239-1266. PubMed ID: 34556893 [TBL] [Abstract][Full Text] [Related]
17. On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces. Hayakawa S; Suzuki T Neural Netw; 2020 Mar; 123():343-361. PubMed ID: 31901565 [TBL] [Abstract][Full Text] [Related]
18. Regularization Methods Based on the Hirose Y Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286805 [TBL] [Abstract][Full Text] [Related]
19. Gradient Descent Ascent for Minimax Problems on Riemannian Manifolds. Huang F; Gao S IEEE Trans Pattern Anal Mach Intell; 2023 Jul; 45(7):8466-8476. PubMed ID: 37018266 [TBL] [Abstract][Full Text] [Related]
20. Per-Round Knapsack-Constrained Linear Submodular Bandits. Yu B; Fang M; Tao D Neural Comput; 2016 Dec; 28(12):2757-2789. PubMed ID: 27626968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]