These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36103776)

  • 1. Discrimination of coherent and incoherent cathodoluminescence using temporal photon correlations.
    Scheucher M; Schachinger T; Spielauer T; Stöger-Pollach M; Haslinger P
    Ultramicroscopy; 2022 Nov; 241():113594. PubMed ID: 36103776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent light emission in cathodoluminescence when using GaAs in a scanning (transmission) electron microscope.
    Stöger-Pollach M; Pichler CF; Dan T; Zickler GA; Bukvišová K; Eibl O; Brandstätter F
    Ultramicroscopy; 2021 May; 224():113260. PubMed ID: 33774193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon Statistics of Incoherent Cathodoluminescence with Continuous and Pulsed Electron Beams.
    Solà-Garcia M; Mauser KW; Liebtrau M; Coenen T; Christiansen S; Meuret S; Polman A
    ACS Photonics; 2021 Mar; 8(3):916-925. PubMed ID: 33763505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cathodoluminescence in the scanning transmission electron microscope.
    Kociak M; Zagonel LF
    Ultramicroscopy; 2017 Mar; 174():50-69. PubMed ID: 28040579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathodoluminescence in the scanning transmission electron microscope.
    Kociak M; Zagonel LF
    Ultramicroscopy; 2017 May; 176():112-131. PubMed ID: 28341557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency optical filtering: efficiency vs. temporal-mode discrimination in incoherent and coherent implementations.
    Raymer MG; Banaszek K
    Opt Express; 2020 Oct; 28(22):32819-32836. PubMed ID: 33114958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of Molecular Optical Properties Using Quantum Light and Hong-Ou-Mandel Interferometry.
    Eshun A; Gu B; Varnavski O; Asban S; Dorfman KE; Mukamel S; Goodson T
    J Am Chem Soc; 2021 Jun; 143(24):9070-9081. PubMed ID: 34124903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous and stimulated electron-photon interactions in nanoscale plasmonic near fields.
    Liebtrau M; Sivis M; Feist A; Lourenço-Martins H; Pazos-Pérez N; Alvarez-Puebla RA; de Abajo FJG; Polman A; Ropers C
    Light Sci Appl; 2021 Apr; 10(1):82. PubMed ID: 33859160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photon bunching in cathodoluminescence.
    Meuret S; Tizei LH; Cazimajou T; Bourrellier R; Chang HC; Treussart F; Kociak M
    Phys Rev Lett; 2015 May; 114(19):197401. PubMed ID: 26024196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-Diverse Bunching Metamaterial Antenna for Coincidence Imaging.
    Zhao M; Zhu S; Li J; Shi H; Chen J; He Y; Zhang A
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31167488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coincidence subwavelength fractional Fourier transform.
    Cai Y; Lin Q; Zhu SY
    J Opt Soc Am A Opt Image Sci Vis; 2006 Apr; 23(4):835-41. PubMed ID: 16604764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.
    Yamamoto N
    Microscopy (Oxf); 2016 Aug; 65(4):282-95. PubMed ID: 27473259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence.
    Merano M; Sonderegger S; Crottini A; Collin S; Renucci P; Pelucchi E; Malko A; Baier MH; Kapon E; Deveaud B; Ganière JD
    Nature; 2005 Nov; 438(7067):479-82. PubMed ID: 16306988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new imaging concept in spin polarimetry based on the spin-filter effect.
    Tereshchenko OE; Golyashov VA; Rusetsky VS; Mironov AV; Demin AY; Aksenov VV
    J Synchrotron Radiat; 2021 May; 28(Pt 3):864-875. PubMed ID: 33949994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-energy cathodoluminescence microscopy for the characterization of nanostructures.
    Dierre B; Yuan X; Sekiguchi T
    Sci Technol Adv Mater; 2010 Aug; 11(4):043001. PubMed ID: 27877341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radio-frequency measurements of coherent transition and cherenkov radiation: implications for high-energy neutrino detection.
    Gorham PW; Saltzberg DP; Schoessow P; Gai W; Power JG; Konecny R; Conde ME
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8590-605. PubMed ID: 11138159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent nature of the radiation emitted in delayed luminescence of leaves.
    Bajpai RP
    J Theor Biol; 1999 Jun; 198(3):287-99. PubMed ID: 10366487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Observation of Incoherent Cherenkov Diffraction Radiation in the Visible Range.
    Kieffer R; Bartnik L; Bergamaschi M; Bleko VV; Billing M; Bobb L; Conway J; Forster M; Karataev P; Konkov AS; Jones RO; Lefevre T; Markova JS; Mazzoni S; Padilla Fuentes Y; Potylitsyn AP; Shanks J; Wang S
    Phys Rev Lett; 2018 Aug; 121(5):054802. PubMed ID: 30118307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Polarization-Controlled Conversion of Ultrafast Coherent-Incoherent Exciton Dynamics in Few-Layer ReS
    Sim S; Lee D; Lee J; Bae H; Noh M; Cha S; Jo MH; Lee K; Choi H
    Nano Lett; 2019 Oct; 19(10):7464-7469. PubMed ID: 31448923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons.
    Wang S; Scholes GD; Hsu LY
    J Phys Chem Lett; 2020 Aug; 11(15):5948-5955. PubMed ID: 32619095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.