These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36104257)

  • 21. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome.
    Fleischman NM; Das D; Kumar A; Xu Q; Chiu HJ; Jaroszewski L; Knuth MW; Klock HE; Miller MD; Elsliger MA; Godzik A; Lesley SA; Deacon AM; Wilson IA; Toney MD
    Protein Sci; 2014 Aug; 23(8):1060-76. PubMed ID: 24888348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.
    Griswold WR; Toney MD
    J Am Chem Soc; 2011 Sep; 133(37):14823-30. PubMed ID: 21827189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphate group binding "cup" of PLP-dependent and non-PLP-dependent enzymes: leitmotif and variations.
    Denesyuk AI; Denessiouk KA; Korpela T; Johnson MS
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):234-8. PubMed ID: 12686139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A direct enzymatic evaluation platform (DEEP) to fine-tuning pyridoxal 5'-phosphate-dependent proteins for cadaverine production.
    Xue C; Ng IS
    Biotechnol Bioeng; 2023 Jan; 120(1):272-283. PubMed ID: 36271696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct evidence that an extended hydrogen-bonding network influences activation of pyridoxal 5'-phosphate in aspartate aminotransferase.
    Dajnowicz S; Parks JM; Hu X; Gesler K; Kovalevsky AY; Mueser TC
    J Biol Chem; 2017 Apr; 292(14):5970-5980. PubMed ID: 28232482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli complexed with a PLP-substrate intermediate: inferred reaction mechanism.
    Schmidt A; Sivaraman J; Li Y; Larocque R; Barbosa JA; Smith C; Matte A; Schrag JD; Cygler M
    Biochemistry; 2001 May; 40(17):5151-60. PubMed ID: 11318637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme-independent catabolism of cysteine with pyridoxal-5'-phosphate.
    Mulay P; Chen C; Krishna V
    Sci Rep; 2023 Jan; 13(1):312. PubMed ID: 36609609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures clarify cofactor binding of plant tyrosine decarboxylase.
    Wang H; Yu J; Satoh Y; Nakagawa Y; Tanaka R; Kato K; Yao M
    Biochem Biophys Res Commun; 2020 Mar; 523(2):500-505. PubMed ID: 31898973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.
    Cellini B; Montioli R; Oppici E; Astegno A; Voltattorni CB
    Clin Biochem; 2014 Feb; 47(3):158-65. PubMed ID: 24355692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dimerization misalignment in human glutamate-oxaloacetate transaminase variants is the primary factor for PLP release.
    Lee J; Gokey T; Ting D; He ZH; Guliaev AB
    PLoS One; 2018; 13(9):e0203889. PubMed ID: 30208107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence of oxygen- and pyridoxal phosphate-dependent reactions.
    Hoffarth ER; Rothchild KW; Ryan KS
    FEBS J; 2020 Apr; 287(7):1403-1428. PubMed ID: 32142210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyridoxal 5'-phosphate-dependent catalytic antibody.
    Gramatikova SI; Christen P
    J Biol Chem; 1996 Nov; 271(48):30583-6. PubMed ID: 8940030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Lys-226 in the catalytic mechanism of Bacillus stearothermophilus serine hydroxymethyltransferase--crystal structure and kinetic studies.
    Bhavani S; Trivedi V; Jala VR; Subramanya HS; Kaul P; Prakash V; Appaji Rao N; Savithri HS
    Biochemistry; 2005 May; 44(18):6929-37. PubMed ID: 15865438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and functional insights into the Entamoeba histolytica pyridoxal kinase, an enzyme essential for its survival.
    Tarique KF; Devi S; Tomar P; Ali MF; Rehman SAA; Gourinath S
    J Struct Biol; 2020 Dec; 212(3):107645. PubMed ID: 33045383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyridoxal enzymes: mechanistic diversity and uniformity.
    Hayashi H
    J Biochem; 1995 Sep; 118(3):463-73. PubMed ID: 8690703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural insights into the substrate recognition and reaction specificity of the PLP-dependent fold-type I isoleucine 2-epimerase from Lactobacillus buchneri.
    Awad R; Gans P; Reiser JB
    Biochimie; 2017 Jun; 137():165-173. PubMed ID: 28344038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for D-amino acid transamination by the pyridoxal 5'-phosphate-dependent catalytic antibody 15A9.
    Golinelli-Pimpaneau B; Lüthi C; Christen P
    J Biol Chem; 2006 Aug; 281(33):23969-77. PubMed ID: 16790434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereospecificity of alpha-proton exchange reactions catalysed by pyridoxal-5'-phosphate-dependent enzymes.
    Malthouse JP
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):138-42. PubMed ID: 12686123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2-Aminoacrylate stress damages diverse PLP-dependent enzymes in vivo.
    Shen W; Borchert AJ; Downs DM
    J Biol Chem; 2022 Jun; 298(6):101970. PubMed ID: 35460692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A conformational sampling model for radical catalysis in pyridoxal phosphate- and cobalamin-dependent enzymes.
    Menon BR; Fisher K; Rigby SE; Scrutton NS; Leys D
    J Biol Chem; 2014 Dec; 289(49):34161-74. PubMed ID: 25213862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.