These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36104365)

  • 1. Layered feedback control overcomes performance trade-off in synthetic biomolecular networks.
    Hu CY; Murray RM
    Nat Commun; 2022 Sep; 13(1):5393. PubMed ID: 36104365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal biomolecular integral feedback controller for robust perfect adaptation.
    Aoki SK; Lillacci G; Gupta A; Baumschlager A; Schweingruber D; Khammash M
    Nature; 2019 Jun; 570(7762):533-537. PubMed ID: 31217585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller.
    Agrawal DK; Marshall R; Noireaux V; Sontag ED
    Nat Commun; 2019 Dec; 10(1):5760. PubMed ID: 31848346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antithetic proportional-integral feedback for reduced variance and improved control performance of stochastic reaction networks.
    Briat C; Gupta A; Khammash M
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29899158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidelines for designing the antithetic feedback motif.
    Baetica AA; Leong YP; Murray RM
    Phys Biol; 2020 Aug; 17(5):055002. PubMed ID: 32217822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network.
    Ang J; Bagh S; Ingalls BP; McMillen DR
    J Theor Biol; 2010 Oct; 266(4):723-38. PubMed ID: 20688080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust stability analysis and design under consideration of multiple feedback loops of the tryptophan regulatory network of Escherichia coli.
    Meyer-Baese A; Theis F; Emmett MR
    Adv Exp Med Biol; 2010; 680():189-97. PubMed ID: 20865501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.
    Steinacher A; Bates DG; Akman OE; Soyer OS
    PLoS One; 2016; 11(4):e0153295. PubMed ID: 27082741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive Negative Feedback Control: A Natural Approach for the Design of Synthetic Controllers.
    Montefusco F; Akman OE; Soyer OS; Bates DG
    PLoS One; 2016; 11(8):e0161605. PubMed ID: 27537373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple feedback loop design in the tryptophan regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series.
    Bhartiya S; Chaudhary N; Venkatesh KV; Doyle FJ
    J R Soc Interface; 2006 Jun; 3(8):383-91. PubMed ID: 16849267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold-dominated regulation hides genetic variation in gene expression networks.
    Gjuvsland AB; Plahte E; Omholt SW
    BMC Syst Biol; 2007 Dec; 1():57. PubMed ID: 18062810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trade-off between responsiveness and noise suppression in biomolecular system responses to environmental cues.
    Ratushny AV; Shmulevich I; Aitchison JD
    PLoS Comput Biol; 2011 Jun; 7(6):e1002091. PubMed ID: 21738459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Robustness to Temperature in a Negative Feedback Loop and a Feedforward Loop.
    Patel A; Murray RM; Sen S
    ACS Synth Biol; 2020 Jul; 9(7):1581-1590. PubMed ID: 32525658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation.
    Frei T; Chang CH; Filo M; Arampatzis A; Khammash M
    Proc Natl Acad Sci U S A; 2022 Jun; 119(24):e2122132119. PubMed ID: 35687671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic gene circuits for metabolic control: design trade-offs and constraints.
    OyarzĂșn DA; Stan GB
    J R Soc Interface; 2013 Jan; 10(78):20120671. PubMed ID: 23054953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory dynamics of synthetic gene networks with positive feedback.
    Maeda YT; Sano M
    J Mol Biol; 2006 Jun; 359(4):1107-24. PubMed ID: 16701695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling and Control of Gene Regulatory Networks for Perturbation Mitigation.
    Foo M; Kim J; Bates DG
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):583-595. PubMed ID: 29994499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hard Limits and Performance Tradeoffs in a Class of Antithetic Integral Feedback Networks.
    Olsman N; Baetica AA; Xiao F; Leong YP; Murray RM; Doyle JC
    Cell Syst; 2019 Jul; 9(1):49-63.e16. PubMed ID: 31279505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Framework for Engineering Stress Resilient Plants Using Genetic Feedback Control and Regulatory Network Rewiring.
    Foo M; Gherman I; Zhang P; Bates DG; Denby KJ
    ACS Synth Biol; 2018 Jun; 7(6):1553-1564. PubMed ID: 29746091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes.
    Sotiropoulos V; Kaznessis YN
    BMC Syst Biol; 2007 Jan; 1():7. PubMed ID: 17408514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.