These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36104392)

  • 1. Correlation analysis between the complex electrical permittivity and relaxation time of tissue mimicking phantoms in 7 T MRI.
    Hernandez D; Kim KN
    Sci Rep; 2022 Sep; 12(1):15444. PubMed ID: 36104392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of machine learning to improve the estimation of conductivity and permittivity based on longitudinal relaxation time T1 in magnetic resonance at 7 T.
    Hernandez D; Kim KN
    Sci Rep; 2023 May; 13(1):7837. PubMed ID: 37188769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicone-based materials with tailored MR relaxation characteristics for use in reduced coil visibility and in tissue-mimicking phantom design.
    Motovilova E; Aronowitz E; Vincent J; Shin J; Tan ET; Robb F; Taracila V; Sneag DB; Dyke JP; Winkler SA
    Med Phys; 2023 Jun; 50(6):3498-3510. PubMed ID: 36737839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach for electrical properties estimation using a global integral equation and improvements using high permittivity materials.
    Schmidt R; Webb A
    J Magn Reson; 2016 Jan; 262():8-14. PubMed ID: 26679289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning.
    Farace P; Pontalti R; Cristoforetti L; Antolini R; Scarpa M
    Phys Med Biol; 1997 Nov; 42(11):2159-74. PubMed ID: 9394404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical conductivity and permittivity maps of brain tissues derived from water content based on T
    Michel E; Hernandez D; Lee SY
    Magn Reson Med; 2017 Mar; 77(3):1094-1103. PubMed ID: 26946979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance electrical property mapping at 21.1 T: a study of conductivity and permittivity in phantoms, ex vivo tissue and in vivo ischemia.
    Amouzandeh G; Mentink-Vigier F; Helsper S; Bagdasarian FA; Rosenberg JT; Grant SC
    Phys Med Biol; 2020 Feb; 65(5):055007. PubMed ID: 31307020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR relaxation times of agar-based tissue-mimicking phantoms.
    Antoniou A; Georgiou L; Christodoulou T; Panayiotou N; Ioannides C; Zamboglou N; Damianou C
    J Appl Clin Med Phys; 2022 May; 23(5):e13533. PubMed ID: 35415875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance electrical properties tomography for small anomalies using boundary conditions: A simulation study.
    Lee J; Choi N; Seo JK; Kim DH
    Med Phys; 2017 Sep; 44(9):4773-4785. PubMed ID: 28508476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical Note: T
    Gach HM
    Med Phys; 2019 Apr; 46(4):1785-1792. PubMed ID: 30723933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiofrequency safety of high permittivity pads in MRI-Impact of insulation material.
    Brink WM; Remis RF; Webb AG
    Magn Reson Med; 2023 May; 89(5):2109-2116. PubMed ID: 36708148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions.
    Ianniello C; de Zwart JA; Duan Q; Deniz CM; Alon L; Lee JS; Lattanzi R; Brown R
    Magn Reson Med; 2018 Jul; 80(1):413-419. PubMed ID: 29159985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phantom Construction and Equipment Configurations for Characterizing Electrical Properties Using MRI.
    Chauhan M; Sadleir R
    Adv Exp Med Biol; 2022; 1380():83-110. PubMed ID: 36306095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanodiamond phantoms mimicking human liver: perspective to calibration of T1 relaxation time in magnetic resonance imaging.
    Sękowska A; Majchrowicz D; Sabisz A; Ficek M; Bułło-Piontecka B; Kosowska M; Jing L; Bogdanowicz R; Szczerska M
    Sci Rep; 2020 Apr; 10(1):6446. PubMed ID: 32296116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR relaxation properties of tissue-mimicking phantoms.
    Antoniou A; Damianou C
    Ultrasonics; 2022 Feb; 119():106600. PubMed ID: 34627028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of permittivity and electrical conductivity on image pattern of MRI.
    Harimoto T; Ohno S; Hattori K; Hirosue M; Miyai M; Shibuya K; Kuroda M; Kanazawa S; Kato H
    J Xray Sci Technol; 2013; 21(2):147-59. PubMed ID: 23694908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue phantom to mimic the dielectric properties of human muscle within 20 Hz and 100 kHz for biopotential sensing applications.
    Yu Y; Lowe A; Anand G; Kalra A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6490-6493. PubMed ID: 31947328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Time-Domain Reflectometry Method with Variable Needle Pulse Width for Measuring the Dielectric Properties of Materials.
    Wilczek A; Szypłowska A; Kafarski M; Skierucha W
    Sensors (Basel); 2016 Feb; 16(2):191. PubMed ID: 26861318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification.
    Yuan Y; Wyatt C; Maccarini P; Stauffer P; Craciunescu O; Macfall J; Dewhirst M; Das SK
    Phys Med Biol; 2012 Apr; 57(7):2021-37. PubMed ID: 22430012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generalized system of tissue-mimicking materials for computed tomography and magnetic resonance imaging.
    Singhrao K; Fu J; Gao Y; Wu HH; Yang Y; Hu P; Lewis JH
    Phys Med Biol; 2020 Jul; 65(13):13NT01. PubMed ID: 32252048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.