These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36104444)

  • 1. Effects of substrate bias on the sputtering of high density (111)-nanotwinned Cu films on SiC chips.
    Yang ZH; Wu PC; Chuang TH
    Sci Rep; 2022 Sep; 12(1):15408. PubMed ID: 36104444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanovoid formation mechanism in nanotwinned Cu.
    Fan C; Wang H; Zhang X
    Discov Nano; 2024 Mar; 19(1):43. PubMed ID: 38468015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Sputtering Process for Medium Entropy Alloy Nanotwinned CoCrFeNi Thin Films by Taguchi Method.
    Zhong JY; Wang JJ; Ouyang FY
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of properties of multilayer film sputtered on glass and polypropylene substrates with angular DC magnetron Co-sputtering system.
    Changyom P; Leksakul K; Boonyawan D; Premphet P; Vichiansan N
    Heliyon; 2023 Nov; 9(11):e22247. PubMed ID: 38045136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films.
    Liu X; Bai H; Ren Y; Li J; Liu X
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper.
    Hsiao HY; Liu CM; Lin HW; Liu TC; Lu CL; Huang YS; Chen C; Tu KN
    Science; 2012 May; 336(6084):1007-10. PubMed ID: 22628648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu-Ag Alloy Thin Films.
    Hsieh J; Hung S
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Microcrystal Structure of Sputtered Cu Films Deposited on Si(100) Surfaces: Experiment and Integrated Multiscale Simulation.
    Zhu G; Han M; Xiao B; Gan Z
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing.
    Lai JY; Tran DP; Yang SC; Tseng IH; Shie KC; Leu J; Chen C
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance.
    Chan TC; Lin YM; Tsai HW; Wang ZM; Liao CN; Chueh YL
    Nanoscale; 2014 Jul; 6(13):7332-8. PubMed ID: 24862643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of particle bombardment on the orientation and the residual stress of sputtered AlN films for SAW devices.
    Iborra E; Clement M; Sangrador J; Sanz-Hervás A; Vergara L; Aguilar M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):352-8. PubMed ID: 15128222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of grain orientations of Cu seed layers on the growth of <111>-oriented nanotwinned Cu.
    Liu CM; Lin HW; Lu CL; Chen C
    Sci Rep; 2014 Aug; 4():6123. PubMed ID: 25134840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Cr Ion Bombardment on the Growth of Cu Coatings Deposited by Magnetron Sputtering on ABS Substrates.
    Dai W; Liu Z; Lim M
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ observation of nanotwins formation through twin terrace growth in pulse electrodeposited Cu films.
    Cheng G; Li H; Xu G; Gai W; Luo L
    Sci Rep; 2017 Sep; 7(1):12393. PubMed ID: 28963542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile Properties of <111>-Oriented Nanotwinned Cu with Different Columnar Grain Structures.
    Li YJ; Tu KN; Chen C
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cu Ion Concentration on Microstructures and Mechanical Properties of Nanotwinned Cu Foils Fabricated by Rotary Electroplating.
    Hung YW; Tran DP; Chen C
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of HiPIMS Duty Cycle on Plasma Discharge and the Properties of Cu Film.
    Ren Y; Bai H; Liu X; Li J; Liu X
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic Grain Growth in (111) Nanotwinned Cu Films by DC Electrodeposition.
    Lu TL; Shen YA; Wu JA; Chen C
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31905613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via.
    Sun FL; Liu ZQ; Li CF; Zhu QS; Zhang H; Suganuma K
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29473865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized Pulsed Electrodeposition Process for Three-Dimensional Printing of Nanotwinned Metallic Nanostructures.
    Daryadel S; Behroozfar A; Morsali SR; Moreno S; Baniasadi M; Bykova J; Bernal RA; Minary-Jolandan M
    Nano Lett; 2018 Jan; 18(1):208-214. PubMed ID: 29257699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.