These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36104557)

  • 1. Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland.
    Halldórsson SA; Marshall EW; Caracciolo A; Matthews S; Bali E; Rasmussen MB; Ranta E; Robin JG; Guðfinnsson GH; Sigmarsson O; Maclennan J; Jackson MG; Whitehouse MJ; Jeon H; van der Meer QHA; Mibei GK; Kalliokoski MH; Repczynska MM; Rúnarsdóttir RH; Sigurðsson G; Pfeffer MA; Scott SW; Kjartansdóttir R; Kleine BI; Oppenheimer C; Aiuppa A; Ilyinskaya E; Bitetto M; Giudice G; Stefánsson A
    Nature; 2022 Sep; 609(7927):529-534. PubMed ID: 36104557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland.
    Bindeman IN; Deegan FM; Troll VR; Thordarson T; Höskuldsson Á; Moreland WM; Zorn EU; Shevchenko AV; Walter TR
    Nat Commun; 2022 Jun; 13(1):3737. PubMed ID: 35768436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Millennial storage of near-Moho magma.
    Mutch EJF; Maclennan J; Holland TJB; Buisman I
    Science; 2019 Jul; 365(6450):260-264. PubMed ID: 31320535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep crustal assimilation during the 2021 Fagradalsfjall Fires, Iceland.
    Day JMD; Kelly S; Troll VR; Moreland WM; Cook GW; Thordarson T
    Nature; 2024 Aug; 632(8025):564-569. PubMed ID: 39085608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding andesitic eruptions with a high-speed connection from the mantle.
    Ruprecht P; Plank T
    Nature; 2013 Aug; 500(7460):68-72. PubMed ID: 23903749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamic mid-crustal magma domain revealed by the 2023 to 2024 Sundhnúksgígar eruptions in Iceland.
    Matthews SW; Caracciolo A; Bali E; Halldórsson SA; Sigmarsson O; Guðfinnsson GH; Pedersen GBM; Robin JG; Marshall EW; Aden AA; Gísladóttir BÝ; Bosq C; Auclair D; Merrill H; Levillayer N; Löw N; Rúnarsdóttir RH; Johnson SM; Steinþórsson S; Drouin V
    Science; 2024 Oct; 386(6719):309-314. PubMed ID: 39325865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mafic glass compositions: a record of magma storage conditions, mixing and ascent.
    Cashman KV; Edmonds M
    Philos Trans A Math Phys Eng Sci; 2019 Feb; 377(2139):20180004. PubMed ID: 30966939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melt inclusion constraints on petrogenesis of the 2014-2015 Holuhraun eruption, Iceland.
    Hartley ME; Bali E; Maclennan J; Neave DA; Halldórsson SA
    Contrib Mineral Petrol; 2018; 173(2):10. PubMed ID: 31983759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimum speed limit for ocean ridge magmatism from 210Pb-226Ra-230Th disequilibria.
    Rubin KH; van der Zander I; Smith MC; Bergmanis EC
    Nature; 2005 Sep; 437(7058):534-8. PubMed ID: 16177787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of water to oceanic mantle melting regimes.
    Asimow PD; Langmuir CH
    Nature; 2003 Feb; 421(6925):815-20. PubMed ID: 12594505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The global pattern of trace-element distributions in ocean floor basalts.
    O'Neill HS; Jenner FE
    Nature; 2012 Nov; 491(7426):698-704. PubMed ID: 23192147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite.
    Spandler C; O'Neill HS; Kamenetsky VS
    Nature; 2007 May; 447(7142):303-6. PubMed ID: 17507980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major and trace element compositions of basaltic lavas from western margin of central main Ethiopian rift: enriched asthenosphere vs. mantle plume contribution.
    Meshesha D; Chekol T; Negussia S
    Heliyon; 2021 Dec; 7(12):e08634. PubMed ID: 35005282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.
    Wotzlaw JF; Bindeman IN; Stern RA; D'Abzac FX; Schaltegger U
    Sci Rep; 2015 Sep; 5():14026. PubMed ID: 26356304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magma diversity reflects recharge regime and thermal structure of the crust.
    Weber G; Simpson G; Caricchi L
    Sci Rep; 2020 Jul; 10(1):11867. PubMed ID: 32681077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-surface magma flow instability drives cyclic lava fountaining at Fagradalsfjall, Iceland.
    Scott S; Pfeffer M; Oppenheimer C; Bali E; Lamb OD; Barnie T; Woods AW; Kjartansdóttir R; Stefánsson A
    Nat Commun; 2023 Nov; 14(1):6810. PubMed ID: 37935706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aseismic mid-crustal magma reservoir at Cleveland Volcano imaged through novel receiver function analyses.
    Janiszewski HA; Wagner LS; Roman DC
    Sci Rep; 2020 Feb; 10(1):1780. PubMed ID: 32019967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Petrological and experimental evidence for differentiation of water-rich magmas beneath St. Kitts, Lesser Antilles.
    Melekhova E; Blundy J; Martin R; Arculus R; Pichavant M
    Contrib Mineral Petrol; 2017; 172(11):98. PubMed ID: 32009663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The process of formation of ocean crust.
    Lewis BT
    Science; 1983 Apr; 220(4593):151-7. PubMed ID: 17795800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climbing the crustal ladder: Magma storage-depth evolution during a volcanic flare-up.
    Gualda GAR; Gravley DM; Connor M; Hollmann B; Pamukcu AS; Bégué F; Ghiorso MS; Deering CD
    Sci Adv; 2018 Oct; 4(10):eaap7567. PubMed ID: 30324132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.