BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36104562)

  • 1. Living material assembly of bacteriogenic protocells.
    Xu C; Martin N; Li M; Mann S
    Nature; 2022 Sep; 609(7929):1029-1037. PubMed ID: 36104562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials.
    Gao N; Mann S
    Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic-Induced Reconfiguration and Activation in Membranized Coacervate-Based Protocells.
    Zhang Y; Wang Z; Li M; Xu C; Gao N; Yin Z; Wang K; Mann S; Liu J
    J Am Chem Soc; 2023 May; 145(18):10396-10403. PubMed ID: 37104061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial morphogen-mediated differentiation in synthetic protocells.
    Tian L; Li M; Patil AJ; Drinkwater BW; Mann S
    Nat Commun; 2019 Jul; 10(1):3321. PubMed ID: 31346180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets.
    Gao N; Xu C; Yin Z; Li M; Mann S
    J Am Chem Soc; 2022 Mar; 144(9):3855-3862. PubMed ID: 35192333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
    Yewdall NA; Buddingh BC; Altenburg WJ; Timmermans SBPE; Vervoort DFM; Abdelmohsen LKEA; Mason AF; van Hest JCM
    Chembiochem; 2019 Oct; 20(20):2643-2652. PubMed ID: 31012235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-Based Coacervate Protocells with Cytoprotective Metal-Phenolic Network Membranes.
    Jiang L; Zeng Y; Li H; Lin Z; Liu H; Richardson JJ; Gao Z; Wu D; Liu L; Caruso F; Zhou J
    J Am Chem Soc; 2023 Nov; 145(44):24108-24115. PubMed ID: 37788442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Cell-Inspired Membranization of Coacervate Protocells with a Structured Polysaccharide Layer.
    Ji Y; Lin Y; Qiao Y
    J Am Chem Soc; 2023 Jun; 145(23):12576-12585. PubMed ID: 37267599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells.
    Altamura E; Albanese P; Marotta R; Milano F; Fiore M; Trotta M; Stano P; Mavelli F
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33526592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs.
    Magdalena Estirado E; Mason AF; Alemán García MÁ; van Hest JCM; Brunsveld L
    J Am Chem Soc; 2020 May; 142(20):9106-9111. PubMed ID: 32356660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superstructural ordering in self-sorting coacervate-based protocell networks.
    Mu W; Jia L; Zhou M; Wu J; Lin Y; Mann S; Qiao Y
    Nat Chem; 2024 Feb; 16(2):158-167. PubMed ID: 37932411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA nanotubes in coacervate microdroplets as biomimetic cytoskeletons modulate the liquid fluidic properties of protocells.
    Zhou S; Cai X; Zhang Y; Chen Q; Yang X; Wang K; Jian L; Liu J
    J Mater Chem B; 2022 Oct; 10(40):8322-8329. PubMed ID: 36168959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly.
    Williams DS; Patil AJ; Mann S
    Small; 2014 May; 10(9):1830-40. PubMed ID: 24515342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells.
    Liu S; Zhang Y; Li M; Xiong L; Zhang Z; Yang X; He X; Wang K; Liu J; Mann S
    Nat Chem; 2020 Dec; 12(12):1165-1173. PubMed ID: 33219364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Binding Mechanism of Nanoclay Hybridized Coacervate Microdroplets for the Controllable Construction of Protocells.
    Yan Y; Yin C; Tian L; Yang H
    J Phys Chem Lett; 2024 May; 15(19):5295-5305. PubMed ID: 38722703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic tissue engineering with smart, cytomimetic protocells.
    Green DW; Watson JA; Ben-Nissan B; Watson GS; Stamboulis A
    Biomaterials; 2021 Sep; 276():120941. PubMed ID: 34298445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomic Integration in Nested Protocell Communities.
    Yin Z; Gao N; Xu C; Li M; Mann S
    J Am Chem Soc; 2023 Jul; 145(27):14727-14736. PubMed ID: 37369121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Synthetic Cells Based on Liquid-Liquid Phase Separation.
    Martin N
    Chembiochem; 2019 Oct; 20(20):2553-2568. PubMed ID: 31039282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.