BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36104575)

  • 41. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress.
    Igiehon NO; Babalola OO; Aremu BR
    BMC Microbiol; 2019 Jul; 19(1):159. PubMed ID: 31296165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered exopolysaccharides of Bradyrhizobium japonicum mutants correlate with impaired soybean lectin binding, but not with effective nodule formation.
    Karr DB; Liang RT; Reuhs BL; Emerich DW
    Planta; 2000 Jul; 211(2):218-26. PubMed ID: 10945216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function.
    González JE; York GM; Walker GC
    Gene; 1996 Nov; 179(1):141-6. PubMed ID: 8955640
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface Properties of Wild-Type Rhizobium leguminosarum bv. trifolii Strain 24.2 and Its Derivatives with Different Extracellular Polysaccharide Content.
    Cieśla J; Kopycińska M; Łukowska M; Bieganowski A; Janczarek M
    PLoS One; 2016; 11(10):e0165080. PubMed ID: 27760230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formulation of a Highly Effective Inoculant for Common Bean Based on an Autochthonous Elite Strain of
    Pastor-Bueis R; Sánchez-Cañizares C; James EK; González-Andrés F
    Front Microbiol; 2019; 10():2724. PubMed ID: 31920999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.
    Moretto C; Castellane TC; Lopes EM; Omori WP; Sacco LP; Lemos EG
    Int J Biol Macromol; 2015 Nov; 81():291-8. PubMed ID: 26234581
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum.
    Rizvi A; Ahmed B; Zaidi A; Khan MS
    Ecotoxicology; 2019 Apr; 28(3):302-322. PubMed ID: 30758729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a Novel Pyruvyltransferase Using
    Wells DH; Goularte NF; Barnett MJ; Cegelski L; Long SR
    J Bacteriol; 2021 Nov; 203(24):e0040321. PubMed ID: 34606371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of Biological Coating from Novel Halophilic Exopolysaccharide Exerting Shelf-Life-Prolonging and Biocontrol Actions for Post-Harvest Applications.
    Upadhyaya C; Patel H; Patel I; Ahir P; Upadhyaya T
    Molecules; 2024 Feb; 29(3):. PubMed ID: 38338439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs).
    Marks BB; Megías M; Ollero FJ; Nogueira MA; Araujo RS; Hungria M
    AMB Express; 2015 Dec; 5(1):71. PubMed ID: 26567001
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpI of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis.
    Oliveira LR; Rodrigues EP; Marcelino-Guimarães FC; Oliveira AL; Hungria M
    Funct Integr Genomics; 2013 Jun; 13(2):275-83. PubMed ID: 23652766
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inoculant Production with Diluted Liquid Cultures of Rhizobium spp. and Autoclaved Peat: Evaluation of Diluents, Rhizobium spp., Peats, Sterility Requirements, Storage, and Plant Effectiveness.
    Somasegaran P
    Appl Environ Microbiol; 1985 Aug; 50(2):398-405. PubMed ID: 16346860
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Lecona AM; Nanjareddy K; Blanco L; Piazza V; Vera-Núñez JA; Lara M; Arthikala MK
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of rhizobia isolates obtained from nodules of wild genotypes of common bean.
    Cardoso AA; Andraus MP; Borba TC; Martin-Didonet CC; Ferreira EP
    Braz J Microbiol; 2017; 48(1):43-50. PubMed ID: 27777012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural characterization and antioxidant potential of a novel exopolysaccharide produced by Bacillus velezensis SN-1 from spontaneously fermented Da-Jiang.
    Cao C; Liu Y; Li Y; Zhang Y; Zhao Y; Wu R; Wu J
    Glycoconj J; 2020 Jun; 37(3):307-317. PubMed ID: 32297035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rhizobium meliloti exopolysaccharides: genetic analyses and symbiotic importance.
    Reuber TL; Reed J; Glazebrook J; Glucksmann MA; Ahmann D; Marra A; Walker GC
    Biochem Soc Trans; 1991 Aug; 19(3):636-41. PubMed ID: 1783190
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Opening the "black box" of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899.
    del Cerro P; Rolla-Santos AA; Gomes DF; Marks BB; del Rosario Espuny M; Rodríguez-Carvajal MÁ; Soria-Díaz ME; Nakatani AS; Hungria M; Ollero FJ; Megías M
    BMC Genomics; 2015 Oct; 16():864. PubMed ID: 26502986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter.
    Saravanan C; Shetty PK
    Int J Biol Macromol; 2016 Sep; 90():100-6. PubMed ID: 25687478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of exopolysaccharide produced by Levilactobacillus brevis HDE-9 and evaluation of its potential use in dairy products.
    Du R; Yu L; Yu N; Ping W; Song G; Ge J
    Int J Biol Macromol; 2022 Sep; 217():303-311. PubMed ID: 35839950
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.