These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Genome editing for crop improvement: Challenges and opportunities. Abdallah NA; Prakash CS; McHughen AG GM Crops Food; 2015; 6(4):183-205. PubMed ID: 26930114 [TBL] [Abstract][Full Text] [Related]
28. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392 [TBL] [Abstract][Full Text] [Related]
29. CRISPR/Cas9 to generate plant immunity against pathogen. Zaynab M; Sharif Y; Fatima M; Afzal MZ; Aslam MM; Raza MF; Anwar M; Raza MA; Sajjad N; Yang X; Li S Microb Pathog; 2020 Apr; 141():103996. PubMed ID: 31988004 [TBL] [Abstract][Full Text] [Related]
30. CRISPR/Cas9-Based Genome Editing in Plants. Zhang Y; Ma X; Xie X; Liu YG Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494 [TBL] [Abstract][Full Text] [Related]
31. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430 [TBL] [Abstract][Full Text] [Related]
32. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435 [TBL] [Abstract][Full Text] [Related]
33. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Hussain B; Lucas SJ; Budak H Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293 [TBL] [Abstract][Full Text] [Related]
34. Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Zaidi SS; Mukhtar MS; Mansoor S Trends Biotechnol; 2018 Sep; 36(9):898-906. PubMed ID: 29752192 [TBL] [Abstract][Full Text] [Related]
35. A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement. Ahmar S; Saeed S; Khan MHU; Ullah Khan S; Mora-Poblete F; Kamran M; Faheem A; Maqsood A; Rauf M; Saleem S; Hong WJ; Jung KH Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784649 [TBL] [Abstract][Full Text] [Related]
36. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Ahmar S; Hensel G; Gruszka D Biotechnol Adv; 2023 Dec; 69():108248. PubMed ID: 37666372 [TBL] [Abstract][Full Text] [Related]
37. From bacterial battles to CRISPR crops; progress towards agricultural applications of genome editing. Bryant JA Emerg Top Life Sci; 2019 Nov; 3(6):687-693. PubMed ID: 32915213 [TBL] [Abstract][Full Text] [Related]
38. Emerging Genome Engineering Tools in Crop Research and Breeding. Bilichak A; Gaudet D; Laurie J Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446 [TBL] [Abstract][Full Text] [Related]
39. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Boubakri H Gene; 2023 May; 866():147334. PubMed ID: 36871676 [TBL] [Abstract][Full Text] [Related]
40. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. Bhat MA; Bhat MA; Kumar V; Wani IA; Bashir H; Shah AA; Rahman S; Jan AT J Biotechnol; 2020 Dec; 324():34-60. PubMed ID: 32980369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]