BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 361046)

  • 1. Excited states of oxygen in biology: their possible involvement in cytochrome P450 linked oxidations as well as in the induction of the P450 system by many diverse compounds.
    Paine AJ
    Biochem Pharmacol; 1978; 27(14):1805-13. PubMed ID: 361046
    [No Abstract]   [Full Text] [Related]  

  • 2. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D
    Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reduction of polyhalogenated methanes by liver microsomal cytochrome P450.
    Wolf CR; Mansuy D; Nastainczyk W; Deutschmann G; Ullrich V
    Mol Pharmacol; 1977 Jul; 13(4):698-705. PubMed ID: 18662
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of substrate lipophilicity in determining type 1 microsomal P450 binding characteristics.
    Al-Gailany KA; Houston JB; Bridges JW
    Biochem Pharmacol; 1978 Mar; 27(5):783-8. PubMed ID: 656117
    [No Abstract]   [Full Text] [Related]  

  • 5. Involvement of singlet oxygen in cytochrome P450-dependent substrate oxidations.
    Osada M; Ogura Y; Yasui H; Sakurai H
    Biochem Biophys Res Commun; 1999 Sep; 263(2):392-7. PubMed ID: 10491304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biology of superoxide and of superoxide dismutases - in brief.
    Fridovich I
    Prog Clin Biol Res; 1981; 51():153-72. PubMed ID: 6267615
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Directed modification of the structure of cytochrome P-450 substrates as a method of generating new inducers of the microsomal monooxygenase system].
    Tsyrlov IB; Gerasimov KE; Gutkina NI; Liakhovich VV
    Biokhimiia; 1987 Aug; 52(8):1307-14. PubMed ID: 3663765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cytochrome P450 in the oxidation of glycerol by reconstituted systems and microsomes.
    Clejan LA; Cederbaum AI
    FASEB J; 1992 Jan; 6(2):765-70. PubMed ID: 1537467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems.
    Guengerich FP; Johnson WW
    Biochemistry; 1997 Dec; 36(48):14741-50. PubMed ID: 9398194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial characterization of the major mouse cytochrome P450 enzymes involved in the reductive metabolism of the hypoxic cytotoxin 3-amino-1,2,4-benzotriazine-1,4-di-N-oxide (tirapazamine, SR 4233, WIN 59075).
    Riley RJ; Hemingway SA; Graham MA; Workman P
    Biochem Pharmacol; 1993 Mar; 45(5):1065-77. PubMed ID: 8461036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of nitric oxide by cytochrome P450-catalyzed oxidation of aromatic amidoximes.
    Andronik-Lion V; Boucher JL; Delaforge M; Henry Y; Mansuy D
    Biochem Biophys Res Commun; 1992 May; 185(1):452-8. PubMed ID: 1599484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic cytochrome P-450.
    Paine AJ
    Essays Biochem; 1981; 17():85-126. PubMed ID: 6795037
    [No Abstract]   [Full Text] [Related]  

  • 14. The mechanism of oxidation of allylic alcohols to alpha,beta-unsaturated ketones by cytochrome P450.
    Bellucci G; Chiappe C; Pucci L; Gervasi PG
    Chem Res Toxicol; 1996; 9(5):871-4. PubMed ID: 8828923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative and reductive metabolism by cytochrome P450 2E1.
    Koop DR
    FASEB J; 1992 Jan; 6(2):724-30. PubMed ID: 1537462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification of microsomal cytochrome P450: role of lysyl residues in hydroxylation activity.
    Kunz BC; Richter C
    FEBS Lett; 1983 Sep; 161(2):311-4. PubMed ID: 6413255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, induction and regulation of the cytochrome P450 monooxygenase system in the rat glioma C6 cell line.
    Geng J; Strobel HW
    Brain Res; 1998 Feb; 784(1-2):276-83. PubMed ID: 9518647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperativity in oxidations catalyzed by cytochrome P450 3A4.
    Ueng YF; Kuwabara T; Chun YJ; Guengerich FP
    Biochemistry; 1997 Jan; 36(2):370-81. PubMed ID: 9003190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic deuterium isotope effects for 7-alkoxycoumarin O-dealkylation reactions catalyzed by human cytochromes P450 and in liver microsomes. Rate-limiting C-H bond breaking in cytochrome P450 1A2 substrate oxidation.
    Kim KH; Isin EM; Yun CH; Kim DH; Guengerich FP
    FEBS J; 2006 May; 273(10):2223-31. PubMed ID: 16649998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species.
    Bondy SC; Naderi S
    Biochem Pharmacol; 1994 Jul; 48(1):155-9. PubMed ID: 8043018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.