These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3610495)

  • 1. The deafferented visual cortex: neuronal activity and visual evoked potentials.
    Yinon U; Podell M; Achiron A; Weiser Z
    Int J Neurosci; 1987 Mar; 33(1-2):85-91. PubMed ID: 3610495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of visual cortical cells of the intact and the deafferented hemisphere of unilateral optic tract sectioned acute and chronic adult cats.
    Podell M; Yinon U; Hammer A
    Exp Brain Res; 1984; 55(1):91-6. PubMed ID: 6086374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unilateral visual cortex deafferentation induces changes in receptive field properties of cortical cells in the intact hemisphere of normal and of monocularly deprived cats.
    Yinon U; Podell M
    Brain Res; 1987 Jun; 430(2):205-13. PubMed ID: 3607513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unilateral interruption of geniculate and callosal inputs to the visual cortex of cats: ocular dominance and responsiveness of cells in the deafferented and in the intact hemispheres.
    Yinon U; Achiron A
    Exp Neurol; 1988 Mar; 99(3):579-88. PubMed ID: 3342840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of callosal transfer on visual cortical evoked response and the implication in the development of a visual prosthesis.
    Siu TL; Morley JW
    Graefes Arch Clin Exp Ophthalmol; 2007 Dec; 245(12):1797-803. PubMed ID: 17638003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deafferentation of the visual cortex: the effect on cortical cells in normal and in early monocularly deprived cats.
    Yinon U; Podell M; Goshen S
    Exp Neurol; 1984 Mar; 83(3):486-94. PubMed ID: 6698154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ocular dominance and receptive field properties of visual cortex cells of cats following long-term transection of the optic chiasm and monocular deprivation during adulthood.
    Yinon U; Milgram A
    Behav Brain Res; 1990 May; 38(2):163-73. PubMed ID: 2363836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells.
    Yinon U
    Behav Brain Res; 1994 Oct; 64(1-2):97-110. PubMed ID: 7840897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-critical period plasticity of callosal transfer to visual cortex cells of cats following early conditioning of monocular deprivation and late optic chiasm transection.
    Yinon U; Hammer A
    Brain Res; 1990 May; 516(1):84-90. PubMed ID: 2364285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintained activity, excitation and inhibition of lateral geniculate neurons after monocular deafferentation in the adult cat.
    Eysel UT
    Brain Res; 1979 Apr; 166(2):259-71. PubMed ID: 218692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midsagittal transection of the optic chiasm and the corpus callosum induces visual split brain in cats: the effect on ocular dominance and responsiveness to cells in the visual cortex.
    Yinon U; Chen M; Hammer A
    Exp Neurol; 1988 Jul; 101(1):107-13. PubMed ID: 3391253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split brain acutely and chronically induced in cats causes ipsilateral eye dominance and reduced excitability of cells in the visual cortex.
    Yinon U; Chen M
    Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):86-96. PubMed ID: 3255877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological studies of visual cortex reorganization following cortical deafferentation in neonatal cats.
    Yinon U; Shemesh R; Arda H; Rosner M; Jaros PP
    Can J Physiol Pharmacol; 1995 Sep; 73(9):1378-88. PubMed ID: 8748988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hemispheric dominance of cortical cells in the absence of direct visual pathways.
    Yinon U; Hammer A; Podell M
    Brain Res; 1982 Jan; 232(1):187-90. PubMed ID: 7055697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Recovery cycles of visual cortex electrical responses during the early stages of ontogeny in the cat].
    Maksimova EV; Maksimova LN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(4):708-15. PubMed ID: 7136277
    [No Abstract]   [Full Text] [Related]  

  • 17. Corpus callosum transection reduces binocularity of cells in the visual cortex of adult cats.
    Yinon U; Chen M; Zamir S; Gelerstein S
    Neurosci Lett; 1988 Oct; 92(3):280-4. PubMed ID: 3200487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Activity of callosal neurons of the visual cortex in the cat].
    Mosidze VM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(1):25-31. PubMed ID: 2984858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unit activity during the formation of backward conditioned connections.
    Merzhanova GK; Dorokhov VB
    Neurosci Behav Physiol; 1982; 12(4):344-50. PubMed ID: 7162619
    [No Abstract]   [Full Text] [Related]  

  • 20. Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat.
    Chalupa LM; Anchel H; Lindsley DB
    Exp Neurol; 1972 Sep; 36(3):449-62. PubMed ID: 5071808
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.