These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36105134)

  • 1. A Study on Dual-Response Composite Hydrogels Based on Oriented Nanocellulose.
    Dong L; Liang M; Guo Z; Wang A; Cai G; Yuan T; Mi S; Sun W
    Int J Bioprint; 2022; 8(3):578. PubMed ID: 36105134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting.
    Hsiao SH; Hsu SH
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing Unique Nanoclay-Incorporated Double-Network Hydrogels for Construction of Complex Tissue Engineering Scaffolds.
    Guo Z; Dong L; Xia J; Mi S; Sun W
    Adv Healthc Mater; 2021 Jun; 10(11):e2100036. PubMed ID: 33949152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration.
    Fan Y; Yue Z; Lucarelli E; Wallace GG
    Adv Healthc Mater; 2020 Dec; 9(24):e2001410. PubMed ID: 33200584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications.
    Jin Y; Shen Y; Yin J; Qian J; Huang Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
    Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH
    J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research progress of smart response composite hydrogels based on nanocellulose.
    Hu S; Zhi Y; Shan S; Ni Y
    Carbohydr Polym; 2022 Jan; 275():118741. PubMed ID: 34742444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyaluronic acid-based glucose-responsive antioxidant hydrogel platform for enhanced diabetic wound repair.
    Xu Z; Liu G; Liu P; Hu Y; Chen Y; Fang Y; Sun G; Huang H; Wu J
    Acta Biomater; 2022 Jul; 147():147-157. PubMed ID: 35649507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation.
    Liu X; Song S; Huang J; Fu H; Ning X; He Y; Zhang Z
    J Mater Chem B; 2020 Jul; 8(28):6115-6127. PubMed ID: 32558871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Skin Equivalents with Hair Follicle Structures and Epidermal-Papillary-Dermal Layers Using Gelatin/Hyaluronic Acid Hydrogels.
    Kang MS; Kwon M; Lee SH; Kim WH; Lee GW; Jo HJ; Kim B; Yang SY; Kim KS; Han DW
    Chem Asian J; 2022 Sep; 17(18):e202200620. PubMed ID: 35866189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-shear bioprinting of highly oriented porous hydrogel microfibers to construct anisotropic tissues.
    Shao L; Hou R; Zhu Y; Yao Y
    Biomater Sci; 2021 Oct; 9(20):6763-6771. PubMed ID: 34286720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing of Thermoresponsive Polyisocyanide (PIC) Hydrogels as Bioink and Fugitive Material for Tissue Engineering.
    Celikkin N; Simó Padial J; Costantini M; Hendrikse H; Cohn R; Wilson CJ; Rowan AE; Święszkowski W
    Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable Anisotropic Hydrogel Composites for Soft Bioelectronics.
    Fu L; Gao T; Zhao W; Hu S; Liu L; Shi Z; Huang J
    Macromol Biosci; 2022 Jun; 22(6):e2100467. PubMed ID: 35083860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System.
    Zhou Y; Yue Z; Chen Z; Wallace G
    Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Cytocompatible Gelatin-Cellulose-Alginate Blend Hydrogels.
    Erkoc P; Uvak I; Nazeer MA; Batool SR; Odeh YN; Akdogan O; Kizilel S
    Macromol Biosci; 2020 Oct; 20(10):e2000106. PubMed ID: 32790232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers.
    Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.