These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36105134)

  • 21. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels.
    Fourmann O; Hausmann MK; Neels A; Schubert M; Nyström G; Zimmermann T; Siqueira G
    Carbohydr Polym; 2021 May; 259():117716. PubMed ID: 33673992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation.
    Maiz-Fernández S; Pérez-Álvarez L; Silván U; Vilas-Vilela JL; Lanceros-Méndez S
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mussel-Inspired Naturally Derived Double-Network Hydrogels and Their Application in 3D Printing: From Soft, Injectable Bioadhesives to Mechanically Strong Hydrogels.
    Guo Z; Xia J; Mi S; Sun W
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1798-1808. PubMed ID: 33455396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing.
    Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X
    Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing.
    Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast gelation of multifunctional hydrogel/composite based on self-catalytic Fe
    Chen Y; Wang D; Mensaha A; Wang Q; Cai Y; Wei Q
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1457-1468. PubMed ID: 34492480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors.
    Sakai S; Ohi H; Taya M
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31387235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores.
    Halake KS; Lee J
    Carbohydr Polym; 2014 May; 105():184-92. PubMed ID: 24708968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement.
    Sun W; Tashman JW; Shiwarski DJ; Feinberg AW; Webster-Wood VA
    ACS Biomater Sci Eng; 2022 Jan; 8(1):303-313. PubMed ID: 34860495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels.
    Berglund L; Rakar J; Junker JPE; Forsberg F; Oksman K
    ACS Appl Bio Mater; 2020 Sep; 3(9):6510-6520. PubMed ID: 35021782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth.
    Zhu K; Duan J; Guo J; Wu S; Lu A; Zhang L
    Biomacromolecules; 2017 Dec; 18(12):3904-3912. PubMed ID: 28992405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.