BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36105143)

  • 1. Tannic Acid-mediated Multifunctional 3D Printed Composite Hydrogel for Osteochondral Regeneration.
    Dong L; Han Z; Li X
    Int J Bioprint; 2022; 8(3):587. PubMed ID: 36105143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model.
    Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R
    Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds.
    Gao F; Xu Z; Liang Q; Li H; Peng L; Wu M; Zhao X; Cui X; Ruan C; Liu W
    Adv Sci (Weinh); 2019 Aug; 6(15):1900867. PubMed ID: 31406678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration.
    Dong L; Bu Z; Xiong Y; Zhang H; Fang J; Hu H; Liu Z; Li X
    Int J Biol Macromol; 2021 Oct; 188():72-81. PubMed ID: 34364938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration.
    Wang R; He X; Su S; Bai J; Liu H; Zhou F
    Int J Biol Macromol; 2024 May; 266(Pt 2):131357. PubMed ID: 38580010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BMSCs-Seeded Interpenetrating Network GelMA/SF Composite Hydrogel for Articular Cartilage Repair.
    Zheng K; Zheng X; Yu M; He Y; Wu D
    J Funct Biomater; 2023 Jan; 14(1):. PubMed ID: 36662086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects.
    Zhang W; Zhang Y; Li X; Cao Z; Mo Q; Sheng R; Ling C; Chi J; Yao Q; Chen J; Wang H
    Mater Today Bio; 2022 Mar; 14():100251. PubMed ID: 35469254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering.
    Xiang C; Zhang X; Zhang J; Chen W; Li X; Wei X; Li P
    J Funct Biomater; 2022 Sep; 13(3):. PubMed ID: 36135575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment.
    Liu Z; Guo S; Dong L; Wu P; Li K; Li X; Li X; Qian H; Fu Q
    Mater Today Bio; 2022 Dec; 16():100425. PubMed ID: 36186847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin.
    Liu B; Wang Y; Miao Y; Zhang X; Fan Z; Singh G; Zhang X; Xu K; Li B; Hu Z; Xing M
    Biomaterials; 2018 Jul; 171():83-96. PubMed ID: 29684678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of 3D-Printed Interpenetrating Hydrogel Scaffolds for Promoting Chondrogenic Differentiation.
    Guan J; Yuan FZ; Mao ZM; Zhu HL; Lin L; Chen HH; Yu JK
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds.
    Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG
    Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tea polyphenol/glycerol-treated double-network hydrogel with enhanced mechanical stability and anti-drying, antioxidant and antibacterial properties for accelerating wound healing.
    Dong L; Han Z; Zhang H; Yang R; Fang J; Wang L; Li X; Li X
    Int J Biol Macromol; 2022 May; 208():530-543. PubMed ID: 35346679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration.
    Wang H; Hu B; Li H; Feng G; Pan S; Chen Z; Li B; Song J
    Int J Nanomedicine; 2022; 17():1511-1529. PubMed ID: 35388269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel multifunctional bilayer scaffold based on chitosan nanofiber/alginate-gelatin methacrylate hydrogel for full-thickness wound healing.
    Asadi N; Mehdipour A; Ghorbani M; Mesgari-Abbasi M; Akbarzadeh A; Davaran S
    Int J Biol Macromol; 2021 Dec; 193(Pt A):734-747. PubMed ID: 34717980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofabrication of Cell-Laden Gelatin Methacryloyl Hydrogels with Incorporation of Silanized Hydroxyapatite by Visible Light Projection.
    Su JJ; Lin CH; Chen H; Lee SY; Lin YM
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration.
    Liu F; Wang X; Li Y; Ren M; He P; Wang L; Xu J; Yang S; Ji P
    Stem Cell Res Ther; 2022 Jan; 13(1):26. PubMed ID: 35073961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant.
    Rajabi N; Kharaziha M; Emadi R; Zarrabi A; Mokhtari H; Salehi S
    J Colloid Interface Sci; 2020 Mar; 564():155-169. PubMed ID: 31911221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.