BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36105244)

  • 1. Optimization Method of an Antibreast Cancer Drug Candidate Based on Machine Learning.
    Huang Z; Jiang S; Xiao W
    Comput Math Methods Med; 2022; 2022():4133663. PubMed ID: 36105244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topology-enhanced molecular graph representation for anti-breast cancer drug selection.
    Gao Y; Chen S; Tong J; Fu X
    BMC Bioinformatics; 2022 Sep; 23(1):382. PubMed ID: 36123643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal modeling of anti-breast cancer candidate drugs screening based on multi-model ensemble learning with imbalanced data.
    Zhou J; Li X; Ma Y; Wu Z; Xie Z; Zhang Y; Wei Y
    Math Biosci Eng; 2023 Jan; 20(3):5117-5134. PubMed ID: 36896538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computer-aided drug design approach to discover tumour suppressor p53 protein activators for colorectal cancer therapy.
    Patrício RPS; Videira PA; Pereira F
    Bioorg Med Chem; 2022 Jan; 53():116530. PubMed ID: 34861473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antistroke Network Pharmacological Prediction of Xiaoshuan Tongluo Recipe Based on Drug-Target Interaction Based on Deep Learning.
    Zhou Y
    Comput Math Methods Med; 2022; 2022():6095964. PubMed ID: 35959347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation learning for mammography mass lesion classification with convolutional neural networks.
    Arevalo J; González FA; Ramos-Pollán R; Oliveira JL; Guevara Lopez MA
    Comput Methods Programs Biomed; 2016 Apr; 127():248-57. PubMed ID: 26826901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs.
    Liu J; Zhou Z; Kong S; Ma Z
    Front Oncol; 2022; 12():956705. PubMed ID: 35936743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.
    Olisah CC; Smith L; Smith M
    Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy.
    Aghaei F; Tan M; Hollingsworth AB; Qian W; Liu H; Zheng B
    Med Phys; 2015 Nov; 42(11):6520-8. PubMed ID: 26520742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial immune system features added to breast cancer clinical data for machine learning (ML) applications.
    Nave O; Elbaz M
    Biosystems; 2021 Apr; 202():104341. PubMed ID: 33482276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep neural network-based approach for prediction of mutagenicity of compounds.
    Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Blood-Brain Barrier Penetration (BBBP) Based on Molecular Descriptors of the Free-Form and In-Blood-Form Datasets.
    Sakiyama H; Fukuda M; Okuno T
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective up-sampling approach for breast cancer prediction with imbalanced data: A machine learning model-based comparative analysis.
    Tran T; Le U; Shi Y
    PLoS One; 2022; 17(5):e0269135. PubMed ID: 35622821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI.
    Lee JY; Lee KS; Seo BK; Cho KR; Woo OH; Song SE; Kim EK; Lee HY; Kim JS; Cha J
    Eur Radiol; 2022 Jan; 32(1):650-660. PubMed ID: 34226990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Breast Cancer Leveraging Supervised Machine Learning Techniques.
    Aamir S; Rahim A; Aamir Z; Abbasi SF; Khan MS; Alhaisoni M; Khan MA; Khan K; Ahmad J
    Comput Math Methods Med; 2022; 2022():5869529. PubMed ID: 36017156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.