BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36105388)

  • 1. Automated detection and quantification of brain metastases on clinical MRI data using artificial neural networks.
    Pflüger I; Wald T; Isensee F; Schell M; Meredig H; Schlamp K; Bernhardt D; Brugnara G; Heußel CP; Debus J; Wick W; Bendszus M; Maier-Hein KH; Vollmuth P
    Neurooncol Adv; 2022; 4(1):vdac138. PubMed ID: 36105388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated volumetric assessment with artificial neural networks might enable a more accurate assessment of disease burden in patients with multiple sclerosis.
    Brugnara G; Isensee F; Neuberger U; Bonekamp D; Petersen J; Diem R; Wildemann B; Heiland S; Wick W; Bendszus M; Maier-Hein K; Kickingereder P
    Eur Radiol; 2020 Apr; 30(4):2356-2364. PubMed ID: 31900702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.
    Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH
    Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Computer-Aided Detection System for Automated Treatment Response Assessment of Brain Metastases on 3D MRI.
    Cho J; Kim YJ; Sunwoo L; Lee GP; Nguyen TQ; Cho SJ; Baik SH; Bae YJ; Choi BS; Jung C; Sohn CH; Han JH; Kim CY; Kim KG; Kim JH
    Front Oncol; 2021; 11():739639. PubMed ID: 34778056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional U-Net Convolutional Neural Network for Detection and Segmentation of Intracranial Metastases.
    Rudie JD; Weiss DA; Colby JB; Rauschecker AM; Laguna B; Braunstein S; Sugrue LP; Hess CP; Villanueva-Meyer JE
    Radiol Artif Intell; 2021 May; 3(3):e200204. PubMed ID: 34136817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis.
    Schlaeger S; Shit S; Eichinger P; Hamann M; Opfer R; Krüger J; Dieckmeyer M; Schön S; Mühlau M; Zimmer C; Kirschke JS; Wiestler B; Hedderich DM
    Insights Imaging; 2023 Jul; 14(1):123. PubMed ID: 37454342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the HD-GLIO Deep Learning Algorithm for Brain Tumour Segmentation on Postoperative MRI.
    Sørensen PJ; Carlsen JF; Larsen VA; Andersen FL; Ladefoged CN; Nielsen MB; Poulsen HS; Hansen AE
    Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for glioblastoma segmentation using preoperative magnetic resonance imaging identifies volumetric features associated with survival.
    Wan Y; Rahmat R; Price SJ
    Acta Neurochir (Wien); 2020 Dec; 162(12):3067-3080. PubMed ID: 32662042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic detection and segmentation of multiple brain metastases on magnetic resonance image using asymmetric UNet architecture.
    Cao Y; Vassantachart A; Ye JC; Yu C; Ruan D; Sheng K; Lao Y; Shen ZL; Balik S; Bian S; Zada G; Shiu A; Chang EL; Yang W
    Phys Med Biol; 2021 Jan; 66(1):015003. PubMed ID: 33186927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated multiclass tissue segmentation of clinical brain MRIs with lesions.
    Weiss DA; Saluja R; Xie L; Gee JC; Sugrue LP; Pradhan A; Nick Bryan R; Rauschecker AM; Rudie JD
    Neuroimage Clin; 2021; 31():102769. PubMed ID: 34333270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary Central Nervous System Lymphoma: Clinical Evaluation of Automated Segmentation on Multiparametric MRI Using Deep Learning.
    Pennig L; Hoyer UCI; Goertz L; Shahzad R; Persigehl T; Thiele F; Perkuhn M; Ruge MI; Kabbasch C; Borggrefe J; Caldeira L; Laukamp KR
    J Magn Reson Imaging; 2021 Jan; 53(1):259-268. PubMed ID: 32662130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast-Enhanced Black Blood MRI Sequence Is Superior to Conventional T1 Sequence in Automated Detection of Brain Metastases by Convolutional Neural Networks.
    Kottlors J; Geissen S; Jendreizik H; Große Hokamp N; Fervers P; Pennig L; Laukamp K; Kabbasch C; Maintz D; Schlamann M; Borggrefe J
    Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34206103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network.
    Chang CY; Buckless C; Yeh KJ; Torriani M
    Skeletal Radiol; 2022 Feb; 51(2):391-399. PubMed ID: 34291325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of deep learning-based tumor segmentation for target delineation and response assessment in grade-4 glioma using multi-parametric MRI.
    Hannisdal MH; Goplen D; Alam S; Haasz J; Oltedal L; Rahman MA; Rygh CB; Lie SA; Lundervold A; Chekenya M
    Neurooncol Adv; 2023; 5(1):vdad037. PubMed ID: 37152808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Brain Metastases Detection Framework for T1-Weighted Contrast-Enhanced 3D MRI.
    Dikici E; Ryu JL; Demirer M; Bigelow M; White RD; Slone W; Erdal BS; Prevedello LM
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2883-2893. PubMed ID: 32203040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment.
    Schelb P; Kohl S; Radtke JP; Wiesenfarth M; Kickingereder P; Bickelhaupt S; Kuder TA; Stenzinger A; Hohenfellner M; Schlemmer HP; Maier-Hein KH; Bonekamp D
    Radiology; 2019 Dec; 293(3):607-617. PubMed ID: 31592731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI.
    Le Berre A; Kamagata K; Otsuka Y; Andica C; Hatano T; Saccenti L; Ogawa T; Takeshige-Amano H; Wada A; Suzuki M; Hagiwara A; Irie R; Hori M; Oyama G; Shimo Y; Umemura A; Hattori N; Aoki S
    Neuroradiology; 2019 Dec; 61(12):1387-1395. PubMed ID: 31401723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.