These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3610547)

  • 1. Interferometric technique for investigation of laser thermal retinal damage.
    Krauss JM; Puliafito CA; Lin WZ; Fujimoto JG
    Invest Ophthalmol Vis Sci; 1987 Aug; 28(8):1290-7. PubMed ID: 3610547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Retinal reactions to intense light. I. Threshold lesions. Experimental, morphological and clinical studies of pathological and therapeutic effects of laser and white light].
    Wallow IH; Birngruber R; Gabel VP; Hillenkamp F; Lund OI
    Adv Ophthalmol; 1975; 31():159-232. PubMed ID: 810008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed retinal effects of the frequency-doubled YAG laser (532 nm).
    Mosier MA; Champion J; Liaw LH; Berns MW
    Invest Ophthalmol Vis Sci; 1987 Aug; 28(8):1298-305. PubMed ID: 3610548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Tissue effects of argon laser photocoagulation at threshold doses. Experimental study on the retina of the miniature pig and the rabbit].
    Schepens JM; Englert U; Leuenberger PM
    Adv Ophthalmol; 1981; 42():18-55. PubMed ID: 7013448
    [No Abstract]   [Full Text] [Related]  

  • 5. Phototoxicity to the retina: mechanisms of damage.
    Glickman RD
    Int J Toxicol; 2002; 21(6):473-90. PubMed ID: 12537644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histopathology of retinal lesions produced by long-term laser exposure.
    Gibbons WD; Schmidt RE; Allen RG
    Aviat Space Environ Med; 1977 Aug; 48(8):708-11. PubMed ID: 407896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Value of fluorescein angiography in control of retinal thermal damage due to diode laser].
    Desmettre T; Devoisselle JM; Soulie-Begu S; Mordon S
    J Fr Ophtalmol; 1999; 22(7):730-7. PubMed ID: 10510750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and recovery of laser-induced retinal lesion in rats.
    Belokopytov M; Belkin M; Dubinsky G; Epstein Y; Rosner M
    Retina; 2010 Apr; 30(4):662-70. PubMed ID: 19996833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting clinical efficacy of photoangiolytic and cutting/ablating lasers using the chick chorioallantoic membrane model: implications for endoscopic voice surgery.
    Burns JA; Kobler JB; Heaton JT; Anderson RR; Zeitels SM
    Laryngoscope; 2008 Jun; 118(6):1109-24. PubMed ID: 18354337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotective therapy for argon-laser induced retinal injury.
    Rosner M; Solberg Y; Turetz J; Belkin M
    Exp Eye Res; 1997 Oct; 65(4):485-95. PubMed ID: 9464182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundus photocoagulation with the argon and krypton lasers: a comparative study.
    Peyman GA; Li M; Yoneya S; Goldberg MF; Raichand M
    Ophthalmic Surg; 1981 Jul; 12(7):481-90. PubMed ID: 7196563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Nd:YAG laser-mediated thermal damage in rabbit nasal septal cartilage.
    Li C; Protsenko DE; Zemek A; Chae YS; Wong B
    Lasers Surg Med; 2007 Jun; 39(5):451-7. PubMed ID: 17565732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of thermal damage in biological tissues caused by laser irradiation.
    Zhou J; Chen JK; Zhang Y
    Mol Cell Biomech; 2007 Mar; 4(1):27-39. PubMed ID: 17879769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanin granule models for the processes of laser-induced thermal damage in pigmented retinal tissues. I. Modeling of laser-induced heating of melanosomes and selective thermal processes in retinal tissues.
    Pustovalov VK; Jean B
    Bull Math Biol; 2007 Jan; 69(1):245-63. PubMed ID: 16850352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In vitro effects of argon laser radiation the human healthy and atherosclerotic aorta].
    de la Llata Romero M; Silva Oropeza E; Valero Elizondo G; Ortega Martínez R; Carranza Gallardo J; Velez y Tello M; Monteverde Grether C; Nava López G; Ponce Zavala L
    Arch Inst Cardiol Mex; 1990; 60(6):521-8. PubMed ID: 2099120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal injury thresholds for blue wavelength lasers.
    Lund DJ; Stuck BE; Edsall P
    Health Phys; 2006 May; 90(5):477-84. PubMed ID: 16607179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathology of macular lesions from subnanosecond pulses of visible laser energy.
    Toth CA; Narayan DG; Cain CP; Noojin GD; Winter KP; Rockwell BA; Roach WP
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2204-13. PubMed ID: 9344343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new model for laser-induced thermal damage in the retina.
    Till SJ; Till J; Milsom PK; Rowlands G
    Bull Math Biol; 2003 Jul; 65(4):731-46. PubMed ID: 12875340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental studies of the tensile strength of laser adhesions].
    Misita V
    Klin Monbl Augenheilkd; 1984 Jul; 185(1):43-5. PubMed ID: 6541270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions.
    Kyhn MV; Kiilgaard JF; Scherfig E; Prause JU; la Cour M
    Acta Ophthalmol; 2008 Nov; 86(7):786-93. PubMed ID: 18754822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.