These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36105562)
1. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Sahranavard M; Sarkari S; Safavi S; Ghorbani F Biomater Transl; 2022; 3(2):105-115. PubMed ID: 36105562 [TBL] [Abstract][Full Text] [Related]
2. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451 [TBL] [Abstract][Full Text] [Related]
3. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks. Jeong W; Kim MK; Kang HW J Tissue Eng; 2021; 12():2041731421997091. PubMed ID: 33717429 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks. Wang B; Barceló X; Von Euw S; Kelly DJ Mater Today Bio; 2023 Jun; 20():100624. PubMed ID: 37122835 [TBL] [Abstract][Full Text] [Related]
5. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Badhe RV; Chatterjee A; Bijukumar D; Mathew MT Bone; 2023 Jun; 171():116746. PubMed ID: 36965655 [TBL] [Abstract][Full Text] [Related]
6. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
7. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Lin L; Jiang S; Yang J; Qiu J; Jiao X; Yue X; Ke X; Yang G; Zhang L Int J Bioprint; 2023; 9(1):637. PubMed ID: 36844245 [TBL] [Abstract][Full Text] [Related]
8. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A Gels; 2022 Mar; 8(3):. PubMed ID: 35323292 [TBL] [Abstract][Full Text] [Related]
9. [Preparation and application of decellularized extracellular matrix bioink: a review]. Yan J; Xu Y Sheng Wu Gong Cheng Xue Bao; 2021 Nov; 37(11):4024-4035. PubMed ID: 34841802 [TBL] [Abstract][Full Text] [Related]
10. [Research progress of Pei Z; Wang J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Apr; 36(4):487-494. PubMed ID: 35426290 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related]
12. Decellularized ECM-derived bioinks: Prospects for the future. Kabirian F; Mozafari M Methods; 2020 Jan; 171():108-118. PubMed ID: 31051254 [TBL] [Abstract][Full Text] [Related]
13. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Barthold JE; McCreery KP; Martinez J; Bellerjeau C; Ding Y; Bryant SJ; Whiting GL; Neu CP Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35203071 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering. Zhang CY; Fu CP; Li XY; Lu XC; Hu LG; Kankala RK; Wang SB; Chen AZ Molecules; 2022 May; 27(11):. PubMed ID: 35684380 [TBL] [Abstract][Full Text] [Related]
15. Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. Zhu W; Cao L; Song C; Pang Z; Jiang H; Guo C Int J Artif Organs; 2021 Apr; 44(4):269-281. PubMed ID: 32945220 [TBL] [Abstract][Full Text] [Related]
16. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration. Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417 [TBL] [Abstract][Full Text] [Related]
17. Addition of decellularized extracellular matrix of porcine nasal cartilage improves cartilage regenerative capacities of PCL-based scaffolds in vitro. Wiggenhauser PS; Schwarz S; Koerber L; Hoffmann TK; Rotter N J Mater Sci Mater Med; 2019 Oct; 30(11):121. PubMed ID: 31655914 [TBL] [Abstract][Full Text] [Related]
18. Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration. Shanto PC; Park S; Park M; Lee BT Biomater Adv; 2023 Feb; 145():213239. PubMed ID: 36542879 [TBL] [Abstract][Full Text] [Related]
19. Decellularized Extracellular Matrix-Based Bioinks for Tendon Regeneration in Three-Dimensional Bioprinting. Al-Hakim Khalak F; García-Villén F; Ruiz-Alonso S; Pedraz JL; Saenz-Del-Burgo L Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361719 [TBL] [Abstract][Full Text] [Related]
20. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels. Lewis PL; Yan M; Su J; Shah RN Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]